J. Electrochem. Sci. Technol Search

CLOSE


J. Electrochem. Sci. Technol > Accepted Articles
DOI: https://doi.org/10.33961/jecst.2024.00416    [Accepted]
Published online May 20, 2024.
Orientational Relationship Between the Solid-Electrolyte Interphase and Li4Ti5O12 Electrode in Hybrid Aqueous Electrolytes
Tae-Young Ahn1, Eunji Yoo1, Dongkyu Kim2, Jae-Seong Yeo1, Junghun Lee1, Miseon Park1, Wonjun Ahn1, Hyeyoung g Shin2, Yusong g Choi1
1Agency for Defense Development, P.O. Box 35, Yuseong, Daejeon 34186, Republic of Korea
2Graduate School of Energy Science and Technology (GEST), Chungnam National University, Daejeon 34134, Republic of Korea
Correspondence:  Yusong g Choi,
Email: richpine87@gmail.com
Received: 25 April 2024   • Accepted: 20 May 2024
*Tae-Young Ahn and Eunji Yoo contributed equally to this study as co-first authors.
Abstract
Lithium-ion (Li-ion) batteries are key to modern society, but they pose safety risks because of thermal runaway and ignition. In this study, we explored the use of hybrid aqueous electrolytes to enhance the safety and performance of Li-ion batteries, focusing on the solidelectrolyte interface (SEI) formed on lithium titanate (Li4Ti5O12; LTO) electrodes. To achieve this, we employed high-resolution transmission electron microscopy (HRTEM) and density functional theory (DFT) calculations to analyze the microstructure and stability of the SEI layer. Further, we prepared LTO and LiMn2O4 (LMO) electrodes, assembled full cells with hybrid aqueous electrolytes, and carried out electrochemical testing. The HRTEM analysis revealed the epitaxial growth of a LiF SEI layer on the LTO electrode, which has a coherent lattice structure that enhances electrochemical stability. The DFT calculations confirmed the energetic favorability of the LiF-LTO interface, indicating strong adhesion and potential for epitaxial growth. The full cell demonstrated excellent discharge performance, showing a notable improvement in coulombic efficiency after the initial cycle and sustained capacity over 100 cycles. Notably, the formation of a dense, crystalline LiF SEI layer on the LTO electrode is crucial for preventing continuous side reactions and maintaining mechanical stability during cycling. The experimental results, supported by the DFT results, highlight the importance of the orientational relationship between the SEI and the electrode in improving battery performance. The integration of experimental techniques and computational simulations has led to the development of an LTO/LMO full cell with enhanced discharge capabilities and stability. The study provides insights into the growth mechanisms of the SEI layer and its impact on battery performance, demonstrating the potential of hybrid aqueous electrolytes in advancing lithium-ion battery technology. The findings affirm the viability of this approach for optimizing next-generation Li-ion batteries, which can promote the development of safer and more reliable energy storage solutions.
Keywords: water-in-salt, solid-electrolyte interface, hybrid electrolyte, LTO, crystallographic orientation, density functional theory


ABOUT
ARTICLE CATEGORY

Browse all articles >

BROWSE ARTICLES
AUTHOR INFORMATION
Editorial Office
E-mail: journal@kecs.or.kr    Tel: +82-2-568-9392    Fax: +82-2-568-5931                   

Copyright © 2024 by The Korean Electrochemical Society.

Developed in M2PI

Close layer
prev next