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ABSTRACT 

 

Lithium-ion batteries are widely used in many applications due to their high energy density, 

high efficiency, and excellent cycle ability. Once an unknown Li-ion battery is reusable, it is 

important to measure its lifetime and state of health. The most favorable measurement 

method is the cycle test, which is accurate but time- and capacity-consuming. In this study, 

instead of a cycle test, we present an empirical model based on the C-rate test to understand 

the state of health of the battery in a short time. As a result, we show that the partially 

accelerated charge/discharge condition of the Li-ion battery is highly effective for the 

degradation of battery capacity, even when half of the charge/discharge conditions are the 

same. This observation provides a measurable method for predicting battery reuse and future 

capacity degradation. 
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Lithium-ion batteries (LIBs) are rechargeable energy storage devices based on high energy 

density intercalation. They are used in a wide range of applications, from small electronic 

devices to electric vehicles. Since the usage of the batteries gets more extensive, making good 

performance and high reliability gets more critical. The battery loses capacity defined by the 

ampere time (Ah) during the charge and discharge cycles. This capacity reduction results 

from various battery failure mechanisms; porosity degradation of the electrode, the formation 

and growth of a solid electrolyte intermediate phase (SEI) layer, electrolyte decomposition, 

and cracking of electrode particles. These failure mechanisms also affect the impedance and 

coulomb efficiency of the batteries.1 LIB reliability tests are mainly performed by monitoring 

the battery capacity degradation due to repeated charge/discharge cycles. 

The prediction of the remaining lifetime of a battery management system relies mainly on 

mechanical and semi-empirical models for battery state estimations. Many previous studies 

have modeled the state of LIBs,2 providing semi-experiential models to predict capacity loss. 

They have proposed semi-empirical and physical models that describe various mechanisms, 

including solid-electrolyte intermediate phase growth, active material loss, lithium plating, 

and increasing impedance. Diagnostic measurements such as impedance spectroscopy and 

coulombic efficiency can also be utilized for lifetime estimation. While this chemical and 

physical mechanism-based model demonstrates good prediction, statistical and machine 

learning approaches to predict cell lifetime are attractive and good diagnostic alternatives.3 

Recent advances in computing power and data generation techniques have accelerated 

progress in various tasks, including predicting battery health properties, identifying chemical 

synthesis paths, and discovering materials for energy storage and catalysis. 

Much effort has been made to develop new methods for estimating the status of health (SOH) 

of LIBs.4 The Kalman filter has been proposed to estimate the state of charge (SOC) and 
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SOH of LIBs. Particle filters are presented to estimate the internal resistance and SOH of 

LIBs based on the SOC and operational temperature.5 These stochastic filtering methods are 

based on degradation models, and estimation performance is affected by the modeling 

complexity. 

Recently, many researchers have actively studied machine learning techniques to estimate the 

SOH of LIBs by monitoring correlated data, such as voltage, current, temperature, and charge 

rate. A support vector machine algorithm estimated capacity fading from seven cells under 

the 1% error range with partial charge data. This method using available online data has 

demonstrated good accuracy for SOH estimation under electric vehicles’ operating 

conditions. To ensure high precision of the SOH estimation, back-propagation-based neural 

networks have been adopted.6 This research verified the equivalent circuit model parameters 

of the battery using the direct parameter extraction derived by the hybrid pulse power test. To 

illustrate the tendency of the degradation learning time under various charging rates and 

operating temperature conditions, a short- and long-term memory-based approach was also 

proposed. 

A continuous cycle test is one of the most general types of battery cycle tests in which 

batteries are continuously charged and discharged between the manufacturer-specified 

discharge and charge end voltages.7 This test calculates the battery discharge capacity in each 

cycle, which results in a trend of capacity reduction. Therefore, a stress variable in the 

continuous cycle test of a LIB was considered. The normalized battery discharge current is 

typically depicted as the C-rate. For example, a 1.5 A current for a 1500 mAh battery 

represents 1 C of the C-rate. 

Acceleration tests are performed by raising the product’s load conditions to assess its 

reliability quickly.8 For LIBs, an accelerated discharge C-rate is one of the acceleration tests. 
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The capacity reduction was recorded during the test in different cycles. This acts as an 

indicator of battery degradation. In this type of acceleration test, the deterioration indicators 

of the batteries were continuously recorded during the test or at a certain point to capture the 

deterioration process. The battery capacity degradation measurements can be used to model 

the degradation process.  

Many failure mechanisms cause the capacity degradation of LIBs. The side reaction between 

the anode and electrolyte eliminates active lithium and forms an SEI layer on the anode. The 

SEI layer is usually the primary failure mechanism for LIBs in storage and cycling 

operations. In particular, the effect of discharge rates at the combination of four different C-

rates, namely 0.2, 0.5, 1, and 2 C, on the capacity degradation of LIBs was studied, and it was 

concluded that a higher C-rate accelerates the growth of the SEI layer. The temperature 

increase by ohmic heating could encounter pressure accumulation because of the electrolytes’ 

evaporation and the generation of gas products, resulting in cracks on the film surface. Such 

damages cause side reactions between the electrolyte and the lithiated carbon, making the SEI 

layer thicker.  

Carnovale et al. developed a mathematical model that calculates the profile of concentration, 

expansion, and contraction during the extraction and intercalation of lithium into spherical 

particles of electrode materials.9 Their simulations showed that high-power applications have 

a higher chance of particle destruction compared to low-power applications. These damages 

may result in the SEI layer growth. Recently, many works have found the semi-empirical 

model to be a suitable mathematical model representing experimental results rather than a 

physical model.10-12 As they investigated, the empirical battery data is not fully understood 

via the physical model because they are mainly affected by the dominant charge/discharge 

conditions. This paper suggests that the SEI layer continues to be a remarkable failure 
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mechanism of the LIB during accelerated operation condition-based cycling. 

If the discharge C-rate increases, the speed of SEI layer growth would be further accelerated 

with the electrode particles and surface film cracking by overheating. The destruction 

coefficient is a function of operating temperature, which relies on the environmental 

temperature and C-rate causing ohmic heating. The increased battery current makes it more 

susceptible to electrode particles and cracks in the SEI layer.13 Since such a crack may 

provide a new part for reducing the electrolyte, the C-rate may affect the effective anode 

region to which the electrolyte may be accessed. Therefore, the effects of C-rate and  

temperature on degradation level in the nth cycle, D(n), are formalized by the generalized 

power law model8 as follows: 

𝐷(𝑛)  =  𝑎 ·  𝑛𝛼  +  𝑏,              (1) 

where 𝑎  is the degradation coefficient, which is the function of C-rate and temperature 

derived at eq. (2), 𝛼 is the power-law coefficient, and 𝑏 is the offset. The generalized Eyring 

model format is adopted to analyze the effect of temperature, thermal stress, discharge C-rate, 

and non-thermal stress on D(n).14 The generalized Eyring model is generally used to model 

relationships between thermal and non-thermal stress under chemical reaction-based 

mechanisms. These interactions significantly affect the battery capacity degradation 

performance. The coefficient 𝑎 = 𝐸(𝑉, 𝑈) is a function of the thermal stress V and specific 

stress U, given as follows: 

𝑎 = 𝐴𝑉𝑒𝑥𝑝 { 
𝐵

𝑉
+ (𝐶 +

𝐷

𝑉
) 𝑈},          (2) 

where 𝐴𝑉, B, C, and D are the coefficients of the generalized Eyring model. The non-thermal 

stress U consists of the charge and discharge current and voltage. As the thermal and non-
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thermal stresses increase, the capacity degradation increases accordingly. 

Variations in the C-rate were employed in this study. Previous studies have assumed that the 

charge and discharge C-rates are constant during the cycle testing period. However, in 

practice, a battery is not constantly charged or discharged. We have investigated 

mathematical pattern-matching models such as polynomials, power series, rational function, 

exponential, Gaussian models to reflect the degradation performance of various C-rate in that 

the polynomial model showed the lowest fitting error. To describe the effect of the variable 

charging conditions, we modified the diffusivity model (2) by converting a constant b to a 

function of the number of cycles b(n), as follows: 

𝑏(𝑛)  =  𝑎′𝑛𝛽  +  𝑏0,        (3) 

where a′ is a degradation coefficient derived from the inevitable change in charging 

conditions, β is an exponent caused by variable charging conditions, and 𝑏0 is an offset to fit 

this model to the data.    

The experimental results of Case 1 are shown in Figure 1a, where each test period is divided 

into basic and accelerated operation periods. The main objective of this work is to find the 

effect of various battery utilization on battery degradation. Although battery utilization 

varies, we need common charge/discharge operations to compare each condition at the same 

baseline. With these basic operation experiments, the battery is settled in a normal state, and 

accelerated operation periods would be regarded as a source of degradation model in our 

manuscript. In the basic operation period, the 0.5 C charge condition and 0.2 C discharge 

condition were repeated three times. In the acceleration operation period, the charging 

process is the same at 0.5 C but the discharging process proceeds for one cycle at 0.5, 1.0, 

and 2.0 C. As the discharge current increased during the cycle, the degradation in the 
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discharge capacity became relatively high. 

 

Figure 1. Discharge capacity vs. cycle test results with different charge conditions, namely 

(a) 0.5 C for Case 1 and (b) 1.0 C for Case 2. 

Figure 1b shows the experimental results for Case 2. The basic operation period of Case 2 is 

the same as that of Case 1, except for the acceleration operation period during the test period. 

In Case 2, the acceleration operation period is the same as in Case 1, except for charging at 

1.0 C. Compared with the result of Case 1, the degradation of the basic operation period in 

Case 2 is very severe. It was confirmed that the battery capacity was significantly reduced 

when the charging current was high.  

Figure 2 shows a comparison of the charge/discharge capacity and coulombic efficiency of 

the 1st and 45th sets of Cases 1 and 2 under different test conditions. Detailed capacity values 

are shown in Table S1. Figures 2a and 2b represent the values of the 1st and 45th datasets in 

Cases 1 and 2, respectively. One dataset contains four discharge conditions. In Case 1, a 

capacity of 900 mAh or more is maintained under the discharge condition corresponding to 

2.0 C DC in the 45th dataset, whereas in Case 2, the discharge capacity does not even reach 

600 mAh. Overall, the results of Cases 1 and 2, which were similar in the initial 1st dataset, 

show a significant difference in the 45th dataset, which means 270 cycles.  
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Figure 2. Comparison of the charge/discharge capacity and coulombic efficiency of the 1st 

and 45th sets of Cases (a) 1 and (b) 2 under different test conditions. 

Figures 2a and 2b represent the values of the 1st and 45th datasets for Cases 1 and 2, 

respectively. Each dataset contained four discharge conditions. In Case 1, a capacity of 900 

mAh or more is maintained under a discharge condition corresponding to 2.0 C DC in the 

45th dataset. However, in Case 2, the capacity did not even reach 600 mAh. Overall, the 

results of Cases 1 and 2, which were similar in the initial 1st dataset, show a significant 

difference in the 45th dataset, which means 270 cycles. The results are summarized in Table 

S1. In Case 1, the discharge current in the 45th dataset was 1197 mAh, whereas in Case 2, it 

was reduced by approximately 17% to 989 mAh. The capacity fading is as follows: In Case 1, 
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the capacity fading was 74% under the 0.5 C charge and 2.0 C discharge conditions. On the 

other hand, in Case 2, the capacity fading was 46% under the 1.0 C charge and 2.0 C 

discharge conditions. As the data shows, a mild charging condition of 0.5C provides more 

stable data flow than a relatively high 1C charging condition. In particular, data with a 

reversal of coulombic efficiency is observed at 1C charging conditions compared to 0.5C 

discharging conditions. This may reduce the accuracy of predictions of battery performance. 

Therefore, when determining the performance of reused batteries or batteries without usage 

information, serious consideration must be given to the C-rate during charging rather than 

discharging. This will actually contribute to maintaining more efficient battery performance 

as well as securing stable data that can increase the predictability of battery performance. 

 

Figure 3 shows the fitting results of Eq. (1) for the base operations of Cases 1 and 2. The 

accelerated C-rate results are eliminated and the interpolated values between the base 

operations for the adjacent test periods are displaced with the eliminated result values. As 

shown in Figure 3a, the variation and error increased when the charging conditions were 

harsh. To fit the experimental data, as shown in Figure 3b, α was set to 1. For Case 1, a was 

1.204, a′ was −0.001284, β was 2, b0 was −0.8469, and the root mean square error (RMSE) 

was 39.44. For Case 2, a was 3.2, a′ was −0.005784, β was 2, b0  was −27.28, and RMSE 

was 100.4. Figure 3a shows the error between the experimental discharge degradation and 

model-based discharge degradation values. In the two experimental cases, except for the 

charging conditions in Cases 1 and 2, the remaining electrochemical measurement conditions 

were the same. However, the degree of degradation of the discharge capacity was completely 

different. The deterioration linearity of Case 1 was broken in Case 2. In other words, the 

charging conditions significantly affect the cycling ability of the batteries.  
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Figure 3. The fitting (a) errors and (b) results of the discharge capacity degradation 

estimations from base operations for different charging capacity test cases. 

Previous studies have mainly focused on the degradation model of certain parameters, such as 

the voltage and current. In practice, batteries experience variable charge/discharge conditions. 

In this study, it was determined that even when the base operation is mild and constant, the 

battery capacity is highly stimulated by the former charge and discharge conditions. It was 

not important to predict the number of battery cycles under certain conditions since our goal 

was to predict the SOH and reusability of the battery. By employing empirical parameters and 

functions for the former charge and discharge conditions, we effectively observed the SOH of 

the battery. In future work, we need to generalize the formulation and parameters of the 

capacity degradation model with empirical parameters. This study only introduced an 

empirical model of battery experiences. Therefore, the specific values of the model should be 

derived with intensive experiments of various well-defined empirical conditions for battery 

usage. 

Experimental Methods 

Battery specification and cycling 
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Commercial 18650 cells were provided by Remplir Inc. (Chuncheon, Republic of Korea). 

The cell exhibited a capacity of approximately 1500 mAh and consisted of a 

LiNi0.6Mn0.2Co0.2O2 cathode and a graphite anode. All battery studies were conducted using a 

battery cycler system (Neware BTS-4000; Neware Technology Co. Ltd. China). 

Electrochemical tests were performed at various C-rate modes and 2.75 and 4.2 V for rapid 

cell deterioration. The detailed test conditions and evaluation environments are presented in 

Table 1 and Figure 4, respectively. All C-rates were calculated based on the nominal capacity 

specified by the manufacturer. The test conditions are divided into two categories, referred to 

as Cases 1 and 2. Case 1 represents the condition for charging at 0.5 C, whereas Case 2 

represents the condition of charging at 1 C. Except for the charging condition, all other 

conditions, such as the discharge and rest conditions, were the same.  

Table 1. Test procedure for 18650 cells following a (a) 0.5 C charging condition for Case 1 

and (b) 1.0 C charging condition for Case 2 

 

30-min rest following all charge and discharge steps 
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Figure 4. Experimental setup: (a) battery cycler, (b) environment chamber, (c) battery cycler 

software, and (d) 18650 test cell. 
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