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ABSTRACT 

 This research used solid waste from sugarcane production, named bagasse, as raw 

material for a functional carbon electrode. The bagasse was carbonized to produce carbon 

powder and, following activation with water vapor at 700 oC. The activated carbon was doped 

with N and S to improve its electrochemical properties by treating it with thiourea precursor 

and heating it at 850 oC under nitrogen flow to produce N/S doped-carbon (NSCE). The 

produced carbon was then characterized to understand the specific diffraction pattern, 

molecular vibrations, and surface morphology. The result found that the NSCE showed two 

broad diffraction peaks at 23o and 43o, corresponding to [002] and [100] crystal planes 

following JCPDS75-1621. FTIR spectra showed some O-H, C-H, C-O, and C=C peaks. Peaks 

of C=N, C-N, and S-H demonstrate the presence of N/S within the NSCE. Raman analysis 

revealed that N/S doping caused structure defects within the single C6 layer networks, 

providing carbon vacancies (𝑉𝐶
•••• ) because of C replacement by N ( 𝑁𝐶

  ) and S ( 𝑆𝐶
  ). 

Meanwhile, XPS analysis showed N/S introduction to the C network by revealing peaks at 

168.26 eV and 169.55 eV, corresponding to S2p3/2 and S2p1/2, and 171. 95 eV corresponds to 

C-SO3-C, indicating the presence of S within the thiol group attached to the carbon. Meanwhile, 

N1s are revealed at 402.4 eV and 405.5 eV, confirming pyrrolic nitrogen (N-5) and quaternary 

nitrogen (N-Q). The electrochemical analysis found that the reaction within the prepared-

NSCE/NaClO4/Na was reversible, with an onset potential of 0.1 V vs. Na/Na+, explaining the 

intercalation and deintercalation of sodium ions. The sodium battery full cell showed an 

excellent battery performance with an initial charging-discharging capacity of 720 mAh/g and 

570 mAh/g, respectively, at 0.2C. Meanwhile, a cycling test showed the average Coulombic 

Efficiency of 84.4 % and capacity retention of 57 % after 50 cycles. 
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INTRODUCTION 

Batteries are essential device to support the apparent growth of portable electric devices, 

electric vehicles, and energy storage for new and renewable energy power plants. Until recently, 
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lithium-ion batteries (LIBs) dominated the battery market; however, nowadays there is a 

substantial concern with the limited lithium abundance, which is only 0.01 % on Earth, and the 

price increases fast up to $5000/ton[1]. Following the abundance, the supply, the lower price, 

and the comparable electrochemical performance to LIBs, sodium-ion batteries (SIBs) are 

becoming a feasible alternative for LIBs [2,3]. Some previous research on sodium batteries 

used amorphous or hard carbon (HCs) as anode material due to its high electronic conductivity, 

good thermal stability, environmental safety [4], and low-cost production  [5]. Hard carbon 

also has a sizeable interlayer spacing of 0.36 - 0.40 nm, a tortuous structure, and contains 

micropores, which are essential for a potential host material in a secondary battery [6]. 

However, hard carbon as a host electrode still faces deficiencies for sodium batteries because 

Na+ has a larger ionic radius (1.02 Å ) than Li+ (0.76 Å ) [7], which causes hard Na+ to 

intercalate into the carbon microstructure. Therefore, some efforts to increase Na+ intercalation 

have been developed, such as by doping N, P, O into nanoporous carbon [8], and N, B co-

doping carbon nanosheet [9]. 

Some researchers have successfully prepared HCs from biomass, such as wood [10], 

banana peels [11], cotton [12], corn stalk [13], cellulose [14,15], rice husk [16], and sunflower 

seed shells [17]. Bagasse is a solid waste of sugarcane production with high carbon content 

consisting of 50 % cellulose, 25 % hemicellulose, and 25 % lignin [18]. The world bagasse 

production reached almost 100.000 metric tons/year, spread over Brazil, India, China, Thailand, 

and some countries by 3500 metric tons/year average, i.e., USA, Pakistan, Mexico, Russia, 

France and Germany [19]. Meanwhile, Indonesia has a huge potential bagasse production of 

9.9 – 11.2 million tons/ year [20]. It became our background to investigate the carbon active 

preparation from bagasse[21–23]. Activation with water vapor was preferred to replace 

chemical activators such as KOH [24], ZnCl2 [25], and H3PO4 [26], considering the lower price 

and safety reasons for the environment.   
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 In this research, the activated carbon that has been investigated previously; was further 

treated by submitting N and S into the C networks. Thiourea (CH4N2S) was used as an N/S 

precursor. This research aims to increase the electrochemical performance of the bagasse- 

activated carbon and projects the result as a functional electrode material for secondary battery. 

Some characterizations investigated the diffraction peaks, the functional groups available 

within, the indication of structure defects because of N/S doping, and the chemical structure 

elucidation based on the binding energies revealed from the material. The feasibility of the 

prepared material as a functional electrode was tested by combining the N/S doped-carbon with 

Na metal anode, and NaClO4 electrolyte in a CR2023 cell.  

METHOD 

Preparation of N/S doped-Carbon and Its Characterization 

Carbon powder was prepared from bagasse, a solid waste of sugarcane production. The 

bagasse was washed with water, followed by carbonation at 600 oC and then activated at 700 

oC under water vapor flows, as previously mentioned in our previous publication [23]. The 

activated carbon from bagasse (ACB) was then mashed and filtered at 100 mesh to get a small, 

homogenous carbon particle. Next, the produced powder was mixed with thiourea for dual N/S 

doping at a mass ratio 1:1 of carbon to the precursor with ethanol as solvent. 30 mL of ethanol 

was added to the mixture of carbon and precursor, stirred for 2 h at room temperature, and then 

heated in the oven at 80 oC for 6 h. After heating in the oven, the mixture was dried, resulting 

in powder sediment at the flask's bottom. Finally, the powder was heated at 850 oC under N2 

gas flow for 2 h to produce a black powder. A similar procedure was done with distilled water 

as a dispersant.  

The powder was then characterized to understand its crystallinity and the specific 

diffraction peaks through X-ray Diffraction (Rigaku Miniflex 600), the functional groups 

content by FT-IR analysis (Shimadzu IRrestige-21), XPS (JEOL JPS-9200, MgK source, 10 
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kV, 10 mA), and impedance analysis at 20 Hz – 200 kHz (LCR meter EUCOL 20 Hz - 5 MHz) 

was conducted to understand the resistance () and the electrical conductivity (S/cm). The 

undoped carbon was also analysed for comparison.  

Preparation of The Electrode Film 

 A 0.7 g of the prepared powder was mixed with 0.1 g acetylene black (AB) and then 

crushed until homogenously mixed. The mixture was then dried at 60 oC for 45 min. A 0.1 g 

of PVDF was dissolved within 4 mL NMP and stirred until completely dissolved. The NSCE-

AB mixture was added gradually under a stirring condition for 3 h until it formed a homogenous 

slurry. The slurry was then cast on aluminium foil and dried under vacuum at 80 oC for 12 h in 

a vacuum oven (B-One Vacuum Oven VOV – 50, 220V/1400 W).  

Sodium Battery Fabrication and Battery Test 

The electrode film was assembled with NaClO4 electrolytes and a Na metal anode in a 

coin cell CR2032. The NaClO4 solution was fed into the PTFE membrane by dipping the 

membrane in 1 M NaClO4 solution in propylene carbonate for a night. All the assembly was 

conducted within the Argon glove box (KF-40 VGB-1). The fabricated sodium battery was 

then analyzed by cyclic voltammetry (Corrtest Electrochemical Workstation CS150) under a 

voltage range of -1 to 4 Volt vs. Na/Na+ at 1 mVs-1 and 3 mVs-1 of scan rate. Galvanostatic 

charge-discharge test was conducted with NEWARE Battery Testing System (5V1A) at 0.5 to 

3 V under various current rates of 0.2C, 0.5C, and 1C (1C= 374 mAh/g) at Room Temperature. 

The cycling performance test was conducted by running a charge-discharge test for 50 cycles. 

An impedance analysis (EUCOL LCR meter 20 Hz – 5 MHz) was also applied to the prepared-

sodium battery before and after the charge-discharge test. Impedance before and after 50 cycles 

was measured with LCR meter (EUCOL, 20 Hz – 5 MHz frequencies) to understand the 

changes after cycling. 
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RESULT AND DISCUSSION 

 XRD analysis of the prepared carbon resulted in patterns, as shown in Figure 1. The 

patterns of N/S doped-carbon are like the undoped activated carbon, in which a broaden-peak 

lying at 2 at 24 o corresponds to the [002] crystal plane of carbon (JCPDS #41-1487). The 

broad peak confirms amorphous carbon, and the similar patterns demonstrate that the carbon 

characteristic still dominates the after-doping material. 

 

Figure 1. XRD patterns of the doped (NSCE) and undoped carbon (ACB) 

Raman analysis of the prepared carbon reveals broad Raman shifting at 1350 cm-1 and 

1590 cm-1. Raman spectra (Fig. 2) show two broad peaks at 1350 cm-1 and 1590 cm-1, 

confirming the D and G bands [27,28]. The D band reveals that N/S doping caused structure 

defects within the single C6 layer networks. Meanwhile, the G band confirms the sp2 

hybridization of C orbitals, representing the carbon material's graphitic degree [29]. The D and 

G Intensity (ID/IG) ratio expresses the degree of carbon defect, in which a high value indicates 

more defect within the crystal structure. The N/S doping increased the ID/IG ratio from 0.92 

before doping to 1.15, indicating more defects available after doping. The Kröger-Vink 

notation in equations (1) theoretically explains the vacancy formation due to the N/S doping.  

C6 + N + S → 2NC
+ SC

+ VC
••••+ 6CC   (1) 
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Equation (1) shows that two N atoms replaced C (NC), producing two negative charges () 

relative to its initial state, and an atom S replaced C (SC), creating two negative charges () 

close to its initial state. As a result, carbon vacancies (VC) formed to bring the network back 

into neutral charge by compensating with 4 positive charges (••••).  

 

Figure 2. Raman spectrum of the prepared-carbon 

EDX mapping (Figure 3) found that NSCE consist of C, O, S, Si, and Cl with 

composition as listed in Table 1. The result shows that NSCE consist mainly of C with 91.35 

atom %, meanwhile S available at 1.61 %. EDX mapping failed to detect light element like 

nitrogen, N, because of its low photon energy [30]. However, the presence of N in carbon 

network proven by FTIR analysis as described in Figure 4.  

 

 

 

 

 

 

 

Figure 3. EDX mapping of the prepared-NSCE and its elemental composition (Table 1) 

 

Element KeV Mass% Error % Atom % 
C K 0.277 85.36 0.07 91.35 
O K 0.525 6.73 0.33 5.41 
Si K 1.739 2.27 0.07 1.04 
S K 2.307 4.02 0.07 1.61 
Cl K 2.621 1.63 0.09 0.59 

Table 1. Elemental composition of the NSCE 
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FTIR analysis confirms some specific vibrations of carbon, as shown in Fig. 4. The FT-

IR spectrum of undoped-carbon or activated-carbon shows characteristic peaks at 3446 cm-1 

refers to O-H stretching [31,32], C-H stretching at 2884 cm-1 [33,34], C-O stretching at 1092 

cm-1 [32,35], and C=C aromatic at 1570 cm-1 [32,34]. The C=C vibrations shift to about 1587 

cm-1 after N and N/S doping, almost piled up with C=N stretching at around 1534 cm-1 [36,37]. 

The C-N vibration was revealed at about 1048 cm-1 and 1066 cm-1 [38], and the C-N vibration 

piled up with C-S at around 1084 cm-1 after N/S doping [38]. A broad peak at 3446 cm-1 refers 

to O-H stretching, representing H2O adsorption onto carbonaceous material, and an O-H group 

attached to the carbon network around 3418 cm-1 [31,32]. 

 

Figure 4. FTIR spectrum of the prepared-NSCE and the activated carbon (AC) 

XPS analysis furthermore explains the presence of N and S within the carbon network. 

The XPS spectrum as shown by Fig. 5 shows C1s peak at 288.83 eV, 289.6 eV, 293.3 eV, and 

304.86 eV, corresponding to C-C/ C=C, C-S, C-N, and C=O, respectively. The result is like N, 

P, and S doped-hard carbon prepared from the Camphor tree [7]. Sulfur (S2p) can be observed 

at the binding energy of 168.26 eV and 169.55 eV, corresponding to S2p3/2 and S2p1/2 [7], and 

171. 95 eV corresponds to C-SO3-C [39], indicating the presence of S within the thiol group 
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attached to the carbon. A peak at 165 eV also confirms the presence of C-S and S-S bonds. The 

doped sulfur existed as thiophene sulfur (C4S). N1s reveal 402.4 eV and 405.5 eV, confirming 

pyrrolic nitrogen (N-5) and quaternary nitrogen (N-Q). N-5 can increase the diffusivity of Na+, 

and N-Q can increase the conductivity of the carbon [31]. O1s revealed at 527.84 eV and 

536.97 eV correspond to C=O and C-O [39]. Figure 6 describes the double N/S doped carbon’s 

predicted structure and its surface morphology. The structure is drawn based on the XPS result 

and the doping reaction as indicated in equation (1). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. XPS analysis of the NSCE (a) C1s (b) O1s (c) N1s, and (d) S2p 
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Figure 6. NSCE structure as predicted based on the XPS result and the doping reaction (eq. 

(1)), along with its surface morphology at different magnification 

 

N/S doping to the activated carbon (ACB) has increased the specific conductivity from 

2.42 x 10-1 S/cm to 23.74 x 10-1 S/cm at 20 Hz of frequency for the ACB and NSCE, 

respectively. Meanwhile, at a high frequency of 200 kHz, the conductivity increased from 3.06 

x 10-1 S/cm for the ACB to 23.7 x 10-1 S/cm for the NSCE. The increasing is higher than a 

single N doping to the activated carbon, i.e., 5.41 x 10-1 S/cm, as found by our previous research 

[40].  

CV analysis to NSCE | NaClO4 | Na full cell is described in Figure 7, confirming quasi-

reversible oxidation-reduction, attributed to solid-electrolyte Interface (SEI) formation [41,42], 

which lies between 0.764 V- 0.9 V. Figure 7 shows that the electrochemical reaction within the 

NSCE-NaClO4-Na is reversible and consists of an onset potential at 0.1 V vs. Na/Na+, representing Na 

oxidation and intercalation to the carbon network. The oxidation reached a maximum peak at 1.4 V vs. 

Na/Na+ and then started to be reduced at an onset potential of 0.1 V vs. Na/Na+, then peaked at -0.98 

V vs. Na/Na+. Another research on carbon preparation from Camphor wood by HCl activation found 

that the oxidation peak started at 0.01 V and reached a peak at 0.15 V vs. Na/Na+ at reduction started at 
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around 0.7 V vs. Na/Na+ up to 0.01 V [43]. Previous research on biomass-derived carbon also found 

anodic-cathodic activity at 0 – 0.2 V vs. Na/Na+ as insertion and extraction of Na+ in the carbon 

framework[44]. 

 

Figure 7. Cyclic Voltammogram of NSCE-NaClO4-Na at -1 to 4 V vs Na/Na+ at scan rate of 

1 mV/s 
  

The sodium battery NSCE-NaClO4-Na shows an initial charging capacity of 720 

mAh/g and an initial discharge capacity of 570 mAh/g at 0.2C, equal to 0.07 Ag-1 (1C= 372 

mAh/g). The discharge capacity after the 4th cycle is 325 mAh/g, and the charging capacity 

remains constant at 385 mAh/g (Figure 8), resulting in a Coulombic efficiency of 84.4 %. The 

result is close to a sodium battery which was built from mango kernel derived-carbon with a 

discharge capacity of 328 mAh/g and Coulombic Efficiency of 86 % [45], and also close to a 

full sodium cell of NVP@C with biomass-hard carbon with 324.6 mAh/g of initial charge 

capacity [43]. This result is even higher than sodium full cell with Na0.8[Cu0.22Fe0.30Mn0.48]O2 

as cathode and seaweed derived-carbon as the anode, which produced ~180 mAh/g at 0.025 

A/g of current rate [46]. The initial charging capacity is 400 mAh/g, and the discharge capacity 
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is 200 mAh/g at 0.5C (equal to 0.19 Ag-1) current drawn. Meanwhile, the sodium battery with 

activated-bagasse carbon (ACB), the activated carbon before doped by N/S, shows an initial 

charging capacity of 270 mAh/g and the initial discharge capacity of 387 mAh/g at 0.07 Ag-1 

(Figure 8.b), and at 0.19 Ag-1, the charging capacity is 159 mAh/g and the discharge is 265 

mAh/g and drop to 170 mAh/g after 4th cycle(Figure 8.d). It seems that 0.07 Ag-1 and 0.19 Ag-

1 are high enough for the ACB sodium battery, and it caused an oscillation in voltage profile 

and prolong the discharge time. This happen because the voltages reached the upper limit (3 V) 

in a time longer than normal time[47]. Some comparisons are listed in Table 2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 8. Charge-Discharge profile of the sodium NSCE battery (a,c), compared with the 

sodium ACB battery (b,d) 
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The cycle ability (Fig. 9) was done after the first 5 cycles of 0.5C current drawn. The battery 

shows a consistent capacity of ~200 mAh/g with a Coulombic efficiency of around 84.4 %, 

and capacity retention of around 57 % after 50 cycles. The result is even higher than a sodium 

full cell developed from mango kernel derived-carbon as anode and NVP (Na3V2(PO4)3) as 

cathode, which provides ~123 mAh/g and 113 mAh/g of charge and discharge capacity, 

respectively, at the end of 50 cycles [45]. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9. The cycling test performance the sodium NSCE battery at after 5th cycles of 0.19 

Ag-1 

 

Impedance analysis after 50 cycles (Fig. 10) reveals two semi-circles as of 2800  of 

ionic resistance and 2200  of charge transfer electrode-electrolyte resistance. The resistance 

type is confirmed by 9.248 x 10-9 F and 1.44 x 10-7 F of ionic resistance and charge transfer 

resistance, respectively. The ionic resistance increases around 10 times after 50 cycles, 

indicating the formation of some resistive phases. Meanwhile, the charge transfer at electrode-

electrolyte resistance rises to twice after 50 cycles, indicating the presence of an SEI layer 

between the electrode-electrolyte (separator). 
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Table 2. Some researches on biomass based- electrode for Sodium Ion Batteries 

No. Biomass Materials Charge capacity 

(mAh/g)/ current 

rate (Ag-1) 

Discharge 

Capacity 

(mAh/g)/ 

current rate 

(Ag-1) 

Coulom

bic Eff. 

(%) 

Reference 

1 Camphor 

tree 

P/S-Cmph HCs 

N/S- Cmph HCs 

P/N/S- Cmph HCs 

879.6 

766.6 

791.0 

 75.88 

81.93 

70.74 

[48] 

2 Olive 

seeds 

Hard Carbon (HCs)  147.0 39.0 [49] 

3 Mango 

Kernels 

HCs 231.0  113.0/ 0.05 91.0 [45] 

4 Chickpea 

husk 

HCs  330.0/ 0.02  [50] 

5 Camphor HCs 324.6   [43] 

6 Palm leaf HCs  373.0/ 0.025  [51] 

7 Lychee 

seeds 

HCs 146.0/ 0.2 

266.0 / 0.1 

  [52] 

8 Rice husk HCs 276.0   [53] 

9 Spring 

Onion 

S doped-C 

nanosheets 

605.0 / 0.05 

133.0 / 0.01 

  [39] 

10 Seaweed N doped-C 303.0/ 0.1 

192.0/ 0.2 

  [46] 

11 Bagasse N/S doped-C 720.0/ 0.07 

400.0/ 0.19 

570.0 / 0.07 

200.0 / 0.19 

84.4 This 

research 

12 Bagasse Activated-C 260.0/ 0.07   

259.0/ 0.19  

383.0/ 0.07   

262.0/ 0.19  

 This 

research 
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Figure 10. The impedance of the cycled-battery along with the R-C network model 

 

CONCLUSION 

The N/S doping to the prepared carbon from bagasse, a solid biomass produced by 

sugarcane production, initiates defect formation in the carbon network, as proven by the 

increasing Raman ID/IG ratio. The doped sulfur existed as thiophene sulfur (C4S). Meanwhile, 

N1s reveal 402.4 eV and 405.5 eV, confirming pyrrolic nitrogen (N-5) and quaternary nitrogen 

(N-Q). N-5 can increase the diffusivity of Na+, and N-Q can increase the conductivity of the 

carbon. The produced-N/S doped carbon (NSCE) is a suitable electrode for sodium-ion 

batteries by delivering the initial charge-discharge capacity of 720 mAh/g and 570 mAh/g, 

respectively, at 0.2 C (0.07 Ag-1). The battery has a capacity retention of 57 % after 50 cycles, 

a stable 200 mAh/g capacity, and a Coulombic efficiency of 84.4 %. 
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