Effects of Al$_2$O$_3$ Coating on BiVO$_4$ and Mo-doped BiVO$_4$ Film for Solar Water Oxidation

Maheswari Arunachalam1, Gun Yun2, Hyo Seok Lee3, Kwang-Soon Ahn4, Jaeyeong Heo3, and Soon Hyung Kang2,*

1Department of Chemistry, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South of Korea
2Department of Chemistry Education and Optoelectronic Convergence Research Center, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South of Korea
3School of Materials Science and Engineering, Chonnam National University, 77 Yongbong-ro, Buk-gu, Gwangju 61186, South of Korea
4School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongbuk, Gyeongsan, Gyeongbuk 38541, South of Korea

ABSTRACT

Planar BiVO$_4$ and 3 wt% Mo-doped BiVO$_4$ (abbreviated as Mo:BiVO$_4$) film were prepared by the facile spin-coating method on fluorine doped SnO$_2$ (FTO) substrate in the same precursor solution including the Mo precursor in Mo:BiVO$_4$ film. After annealing at a high temperature of 450°C for 30 min to improve crystallinity, the films exhibited the monoclinic crystalline phase and nanoporous architecture. Both films showed no remarkably discrepancy in crystalline or morphological properties. To investigate the effect of surface passivation exploring the Al$_2$O$_3$ layer, the ultra-thin Al$_2$O$_3$ layer with a thickness of approximately 2 nm was deposited on BiVO$_4$ film using the atomic layer deposition (ALD) method. No distinct morphological modification was observed for all prepared BiVO$_4$ and Mo:BiVO$_4$ films. Only slightly reduced nanopores were observed. Although both samples showed some reduction of light absorption in the visible wavelength after coating of Al$_2$O$_3$ layer, the Al$_2$O$_3$ coated BiVO$_4$ (Al$_2$O$_3$/BiVO$_4$) film exhibited enhanced photoelectrochemical performance in 0.5 M Na$_2$SO$_4$ solution (pH 6.5), having higher photocurrent density (0.91 mA/cm2 at 1.23 V vs. reversible hydrogen electrode (RHE), briefly abbreviated as V$_{RHE}$) than BiVO$_4$ film (0.12 mA/cm2 at 1.23 V$_{RHE}$). Moreover, Al$_2$O$_3$ coating on the Mo:BiVO$_4$ film exhibited more enhanced photocurrent density (1.5 mA/cm2 at 1.23 V$_{RHE}$) than the Mo:BiVO$_4$ film (0.86 mA/cm2 at 1.23 V$_{RHE}$). To examine the reasons, capacitance measurement and Mott-Schottky analysis were conducted, revealing that the significant degradation of capacitance value was observed in both BiVO$_4$ film and Al$_2$O$_3$/Mo:BiVO$_4$ film, probably due to degraded capacitance by surface passivation. Furthermore, the flat-band potential (V$_{FB}$) was negatively shifted to about 200 mV while the electronic conductivities were enhanced by Al$_2$O$_3$ coating in both samples, contributing to the advancement of PEC performance by ultra-thin Al$_2$O$_3$ layer.

Keywords: Photoelectrochemical Water Splitting, Surface Passivation, Al$_2$O$_3$, Blocking Layer, Charge Recombination

Received: 25 June 2019, Accepted: 28 July 2019

1. Introduction

Photoelectrochemical (PEC) water splitting using solar light source and proper semiconductor photoelectrode has been considered a sustainable hydrogen production method. To develop a high-performance photoanode for water oxidation, half reaction under visible light, a semiconductor with a suitable band gap ($1.9 \text{ eV} < E_g < 3.1 \text{ eV}$), and a proper position of band gap decorated with a thin layer of water oxidation cocatalyst are required [1,2]. As a representative, BiVO$_4$ ($E_g = 2.4 \text{ eV}$) has emerged as one of the most promising photoanode materials to absorb more visible light with proper band position to evolve the hydrogen and oxygen from water photoelectrolysis and excellent stability of the liquid-solid interface [3,4]. Based on band gap
of 2.4 eV, the theoretical maximum photocurrent of ~7.5 mA/cm² at one sun irradiation can be achieved [5]. However, most of BiVO₄ films still exhibit quite low PEC performance. The main reasons can be explained by an inefficient charge separation at the interface and unfavorable charge transportation through the photoelectrode, leading to the low photocurrent density in PEC working condition [6]. Thus, the heterojunction composed of the core and shell layer showing good band alignment could potentially cope with these weak points of BiVO₄ material. As a recent representative example, 1D cobalt-phosphate (Co-Pi) modified BiVO₄/ZnO junction showing cascading band alignment has exhibited a photocurrent of ~3 mA/cm² at the highest photocurrent density [7]. This is probably due to enhanced visible light absorption and fast electron transport along 1D ZnO nanorods. Also, controlled growth of BiVO₄ layer on the inverse opal WO₃ photoanodes has been fabricated by a template-assisted route to form the heterojunction of the WO₃/BiVO₄ layer [8]. In the similar viewpoint, ultra-thin passivation layers have also been introduced on BiVO₄ photoanode as the blocking layer against charge recombination reaction and the photocorrosion [9]. Several materials have been already investigated, including TiO₂, NiOₓ, CoOₓ, and Al₂O₃ [10-13]. Lewis et al. have reported that ultra-thin amorphous TiO₂ layers with a thickness of ~1 nm can suppress the photocorrosion, revealing a stable photocurrent of ~1.4 mA/cm² at 1.23 V_RHE under one sun irradiation during the testing of several hours [14]. Domen et al. have found that ultra-thin NiO layers with a thickness of ~6 nm can enhance PEC performance as well as photostability in CoO₅-coated BiVO₄ film, achieving solar-to-hydrogen efficiency of ~1.5% [15]. Kafizas et al. have investigated the effect of ultra-thin Al₂O₃ layer with an optimum thickness of approximately 0.33 nm, displaying a remarkable increase in theoretical solar photocurrent from ~0.47 mA/cm² (uncoated BiVO₄ film) to ~3.0 mA/cm² (Al₂O₃/BiVO₄ film), due to suppression of charge recombination reaction [16]. However, in this paper, there is no report on the doped BiVO₄ film which shows the more efficient PEC performance. Even though the surface state of pristine and doped BiVO₄ film is somewhat different, it can be expected that the introduction of ultra-thin Al₂O₃ layer on the doped BiVO₄ film can contribute to the efficient photoelectrochemical activity.

Accordingly, we investigated the role of ultra-thin Al₂O₃ layer on the undoped and Mo-doped BiVO₄ (briefly abbreviated as Mo:BiVO₄) film and their PEC behavior was studied in detail. The Al₂O₃ layer with a thickness of approximately 2 nm was prepared on the BiVO₄ and Mo:BiVO₄ films by the atomic layer deposition (ALD) process and the effectiveness of surface passivation on undoped and doped BiVO₄ films was compared using several analyses tools. Al₂O₃/Mo:BiVO₄ films exhibited enhanced PEC performance, having a photocurrent of 1.5 mA/cm² at 1.23 V_RHE compared to Mo:BiVO₄ film (0.91 mA/cm²). Similarly, the Al₂O₃/BiVO₄ film exhibited improved photocurrent density of 0.86 mA/cm² at 1.23 V_RHE relative to BiVO₄ film (0.12 mA/cm²). This may be due to the favorable charge transfer/transportation in the Mo:BiVO₄ film as well as the degraded charge recombination. Above different films, when cobalt-phosphate (Co-Pi) as a cocatalyst was covered on the top of the film, the maximum photocurrent density of 1.85 mA/cm² at 1.23 V_RHE was obtained.

2. Experimental

2.1 Development of undoped and Mo:BiVO₄ films

An FTO (Pilkington TEC Glass™, sheet resistance 8 Ω sq⁻¹) as a substrate was prepared by following a cleaning process in deionized (DI) water, ethanol, and acetone for 20 min in each step to remove some organic contamination and dust. For spin-coating to make undoped BiVO₄ film, precursors composed of 0.2M ammonium metavanadate in 5 mL deionized (DI) water and 5 mL 60 wt% HNO₃ solution were mixed and stirred continuously until turning to a transparent solution. Then 0.2M bismuth nitrate in 10 mL methanol was added to complete the BiVO₄ solution. Prior to spin coating, the prepared solution was aged for one day. The spin-coating (a volume of 50 μL) was performed under 1500 rpm for 20 sec to make a BiVO₄ film. In the case of 3 wt% Mo:BiVO₄ film, the composition of the prepared solution was the same as BiVO₄ except that 3 wt% sodium molybdate as an additional source material was added into the solution. The deposition procedure to make the Mo:BiVO₄ film was the same as that for making the BiVO₄ film. Finally, to enhance the crystallinity of as-formed undoped BiVO₄ and
Mo:BiVO₄ films, a post-thermal treatment was carried out at 500°C for 2 hrs in ambient air.

Thin Al₂O₃ layer (thickness = 2 nm) was deposited in an ALD vacuum chamber using trimethylaluminum (TMA, Al(CH₃)₃, EGChem, Inc.) and DI water as sources of Al and O, respectively. The growth temperature was 250°C. ALD sequences (precursor-pulse–reactant-pulse) were set to 0.1 s - 10 s - 0.4 s - 25 s for AlO₃. Its growth per cycle (GPC) was confirmed to be 0.144 nm/cycle. The as-deposited Al₂O₃ layer exhibited an amorphous crystalline phase or a weak crystallinity. Therefore, an additional annealing process was performed at 450°C for 30 min under an air atmosphere to improve the crystallinity.

Cobalt phosphate (Co-Pi) as a cocatalyst was deposited on the top of Mo:BiVO₄ films. The precursor solution for the Co-Pi layer was composed of 0.05M cobalt nitrate and 0.1M potassium phosphate buffer solution (pH 7) [17]. Electrodeposition above the film was applied under a constant potential of 1.0 V_{Ag/AgCl} for 20 sec. Finally, the film was rinsed with DI water and dried in N₂ flow.

2.2 Characterization

To determine the morphology of the surface and cross-section of BiVO₄, Mo:BiVO₄, Al₂O₃/Mo:BiVO₄, and Al₂O₃/Mo:BiVO₄ films, JEOL 7500 field-emission scanning electron microscopy (FE-SEM, JEOL Inc.) operating at 10 kV and 10 mA was utilized. Crystalline properties of films were investigated using a high-power X-ray diffraction (HP-XRD, XPert PRO Multi Purpose X-Ray Diffractometer) with Cu Kα radiation operating at 60 kV and 55 mA. Ultraviolet-visible (UV-vis) spectra of BiVO₄, Mo:BiVO₄, Al₂O₃/BiVO₄, and Al₂O₃/Mo:BiVO₄ films were recorded with a PerkinElmer UV-vis Lambda 365 spectrometer equipped with a diffuse reflectance accessory. PEC measurements involving current-voltage (J-V) characteristics under dark and illuminated conditions were conducted with a potentiostat (CHI Instruments, USA) using an Ag/AgCl reference electrode, a Pt mesh counter electrode, and BiVO₄ electrodes. A 150 W Xe lamp (100 mW/cm², AM 1.5 filter) as a light source and 0.5 M Na₂SO₄ solution (pH 6.5) after nitrogen bubbling to remove dissolved oxygen gas were employed to evaluate PEC performance. Incident photon to current efficiency (IPCE) was measured using a 150 W xenon light source and a monochromator (HS technologies, Korea).

Electrochemical impedance spectroscopy (EIS) of BiVO₄, Mo:BiVO₄, Al₂O₃/BiVO₄, and Al₂O₃/Mo:BiVO₄ films was also performed to evaluate cell resistance of each component in the PEC working condition under 1 sun illumination at open-circuit voltage (OCV). The frequency ranged from 0.1 Hz to 10 kHz at amplitude of ±10 mV. To evaluate flat-band potential (V_{FB}) and donor concentration of BiVO₄, Mo:BiVO₄, Al₂O₃/BiVO₄, and Al₂O₃/Mo:BiVO₄ films, Mott-Schottky plots (AUTOLAB/PGSTAT, 128N, Nova) with a frequency of 1 kHz were achieved with the same electrochemical configuration and electrolyte.

3. Results and Discussion

Fig. 1 shows FE-SEM images of the BiVO₄, Mo:BiVO₄, Al₂O₃/BiVO₄, and Al₂O₃/Mo:BiVO₄ films. All films consisted of differently sized porous areas (briefly denoted as domains) separated from each other by thin grooves. In the case of BiVO₄ film (Fig. 1a), within a domain, wormlike pores with a size of several hundreds of nanometers were wholly distributed. Furthermore, the thin groove separating porous domains was completely separated through the entire film (not shown in here) with a thickness of about 200 nm. Meanwhile, the Mo:BiVO₄ film (Fig. 1b) exhibited wormlike pores with a size of several tens of nanometers, displaying a relative small amount of pore size ascribed to grain growth of BiVO₄ film blocked by the added Mo⁶⁺ cations [18]. Above these films, ultra-thin Al₂O₃ layer was deposited by ALD process. Their images are shown in Fig.
Al2O3/BiVO4 and Al2O3/Mo:BiVO4 films exhibited overall similar morphologies, but their wormlike nanopores in a domain were steadily reduced mainly due to steady growth of BiVO4 grains with an additional thermal annealing process under 450°C, not contributed from just 2-nm thick Al2O3 layer. Entirely Al2O3 covered nanoporous BiVO4 films were observed.

Crystalline characteristics and optical properties of BiVO4, Mo:BiVO4, Al2O3/BiVO4, and Al2O3/Mo:BiVO4 films were surveyed using XRD measurement (Fig. 2a) and UV-VIS spectroscopy (Fig. 2b). Dotted vertical lines in Fig. 2a refer to peaks from the FTO substrate. The XRD pattern of the pristine BiVO4 film (Fig. 2a) after calcined at 500°C under air ambient showed well crystallized monoclinic structure corresponding to (013), (004), (024) and (116) planes with lattice parameters of $a = 5.195$, $b = 5.093$ and $c = 11.704$ Å, in excellent accordance with the standard data (JCPDS NO.: 83-1699) [19]. No other peaks for impurity or other binary or ternary compounds were found anywhere, thereby showing the development of a high-quality BiVO4 film. In the case of Mo:BiVO4 film, the position and intensity of all peaks had similar patterns to those of the BiVO4 film probably due to the extremely small amount of molybdate precursor. Furthermore, no modification or change of peaks after Al2O3 coating was found through the entire film, only showing a little bit reduction of peak intensity. In addition, the average crystalline size was calculated using Scherrer’s equation, considering the main peak of (221) plane in all samples. Average crystalline sizes of BiVO4, Mo:BiVO4, Al2O3/BiVO4, and Al2O3/Mo:BiVO4 films were 19.3 nm, 19.4 nm, 19.3 nm, and 19 nm, respectively, disclosing no significant difference in average crystalline size even after deposition of thin Al2O3 layer.

Fig. 2b shows optical absorbance of BiVO4, Mo:BiVO4, Al2O3/BiVO4, and Al2O3/Mo:BiVO4 films fabricated on FTO substrate. The BiVO4 and Mo:BiVO4 film started to absorb light at the wavelength of 525 nm. Its overall absorbance spectra showed similar tendency. Meanwhile, the ultra-thin Al2O3 coated film showed degraded absorbance, showing a little bit reduction of the absorbance and the shift of onset wavelength toward longer wavelength. The exact direct optical bandgap (E_g) was determined for all samples by extrapolating linear portion of the $(ahv)^2$ vs. $hν$ plot as shown in the inset of Fig. 2b, where a was the absorption coefficient and $hν$ was the incident photon energy [20]. Estimated E_g values of BiVO4, Mo:BiVO4, Al2O3/BiVO4, and Al2O3/Mo:BiVO4 films were 2.36 eV, 2.34 eV, 2.34 eV, and 2.20 eV respectively. The slightly reduced E_g value was observed in Mo:BiVO4 film after the ultra-thin Al2O3 coating, indicating the formation of sub-bandgap just below the conduction band of Mo:BiVO4 film, resulting in the extension of visible light absorption to wavelength of 560 nm.

To determine electronic characteristics of the BiVO4 film, Mott-Schottky plots were measured in 0.5 M Na2SO4 solution as a function of applied potential. Results are displayed in Fig. 3. The Mott-Schottky plot (M-S plot) was involved in the capacitance (C) of the space charge region as a function of electrode potential under depletion conditions. It was based on the Mott-Schottky relationship of a semiconductor film. Accordingly, these results gave the information on carrier densi-

![Fig. 2. (a) XRD patterns and (b) absorbance spectra of BiVO4, Mo:BiVO4, Al2O3/BiVO4, and Al2O3/Mo:BiVO4 films.](image-url)
ties through the gradient $\frac{dV}{d(1/C^+)}$ of Mott–Schottky plots and flat band potential (E_{FB}) determined by extrapolating $C = 0$ [21].

$$N_d = \frac{2}{\varepsilon_0 \varepsilon R} \int_0^{V} \frac{dV}{d(1/C^+)}$$ \hspace{1cm} (1)

where ε_0 was electronic charge, ε was dielectric constant (~86) of BiVO$_4$, ε_0 was permittivity of the vacuum, N_d was donor density, and V was the applied voltage. All BiVO$_4$ films exhibited positive slopes as expected for n-type semiconductor. In particular, ultra-thin Al$_2$O$_3$ coated films showed smaller slope than pristine BiVO$_4$ and Mo:BiVO$_4$ films, manifesting increased carrier densities. Quantitatively calculated electron densities of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ were calculated to be 1.52×10^{17}, 3.44×10^{18}, 2.6×10^{17}, and $4.2 \times 10^{18} \text{cm}^{-3}$, respectively. Here, Mo:BiVO$_4$ film showed approximately one order of magnitude higher donor densities than the pristine BiVO$_4$ film probably due to increased carrier densities induced from Mo doping which could contribute to the improvement of electrical conductivities of Mo:BiVO$_4$ film [22]. In addition, the introduction of ultra-thin Al$_2$O$_3$ layer on the top surface of film improved carrier densities a little bit probably ascribed to the high probability of photogenerated charges surviving against the charge recombination reaction. The extent of high carrier densities was as follows: BiVO$_4$ <Al$_2$O$_3$/BiVO$_4$< Mo:BiVO$_4$ < Al$_2$O$_3$/Mo:BiVO$_4$. In case of flat-band potential (E_{FB}), BiVO$_4$ and Mo:BiVO$_4$ films showed E_{FB} of 0.18 V$_{RHE}$ and 0.28 V$_{RHE}$, respectively, whilst E_{FB} of 0.067 V$_{RHE}$ and 0.16 V$_{RHE}$ were obtained for Al$_2$O$_3$/BiVO$_4$ and Al$_2$O$_3$/Mo:BiVO$_4$ films, respectively. A little bit negative shift of E_{FB} was observed in Al$_2$O$_3$/BiVO$_4$ and Mo:BiVO$_4$ films probably due to the high-band gap Al$_2$O$_3$ ($E_g = 3.6$ eV) layer.

In order to investigate PEC activities of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films, linear sweep voltammograms (LSVs) were measured under AM1.5 illumination. Results are presented in Fig. 4a. The dark current of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films collected in the potential range between 0.0 and 1.5 V$_{RHE}$ under the dark condition exists in the region of $\sim10^{-3}$ mA/cm2, showing no meaningful current values (not shown here). At first, onset potentials of BiVO$_4$ and Mo:BiVO$_4$ were near 0.33 and 0.19 V$_{RHE}$, respectively while Al$_2$O$_3$/BiVO$_4$ and Al$_2$O$_3$/Mo:BiVO$_4$ films exhibited onset potentials of 0.05 and 0.1 V$_{RHE}$, respectively, displaying a little bit negative shift of onset potential. These results were similar to those evoked from Mott-Schottky plot probably due to surface passivation from the ultra-thin Al$_2$O$_3$ layer. Herein, the photocurrent density (J) of 0.12 mA/cm2 at 1.23 V$_{RHE}$ was achieved for the pristine BiVO$_4$ film. On the other hand, the

Table 1. Flat band potential (V_{FB}) and donor densities (N_d) of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films.

<table>
<thead>
<tr>
<th>Samples</th>
<th>Flatband potential (V_{FB}, V)</th>
<th>Donor density (N_d, cm$^{-3}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiVO$_4$</td>
<td>0.19</td>
<td>1.52×10^{17}</td>
</tr>
<tr>
<td>Mo:BiVO$_4$</td>
<td>0.31</td>
<td>3.44×10^{18}</td>
</tr>
<tr>
<td>Al$_2$O$_3$/BiVO$_4$</td>
<td>0.1</td>
<td>2.6×10^{17}</td>
</tr>
<tr>
<td>Al$_2$O$_3$/Mo:BiVO$_4$</td>
<td>0.31</td>
<td>4.2×10^{18}</td>
</tr>
</tbody>
</table>

Table 2. Quantitative value of ohmic resistance (R_s) and charge transfer resistance (R_{ct}) of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films fitted by using the suggested equivalent electrical circuit.

<table>
<thead>
<tr>
<th>Samples</th>
<th>R_s (Ω)</th>
<th>R_{ct} (Ω)</th>
</tr>
</thead>
<tbody>
<tr>
<td>BiVO$_4$</td>
<td>102</td>
<td>72432</td>
</tr>
<tr>
<td>Mo:BiVO$_4$</td>
<td>96</td>
<td>17012</td>
</tr>
<tr>
<td>Al$_2$O$_3$/BiVO$_4$</td>
<td>94</td>
<td>4441</td>
</tr>
<tr>
<td>Al$_2$O$_3$/Mo:BiVO$_4$</td>
<td>96</td>
<td>2904</td>
</tr>
</tbody>
</table>

Fig. 3. Mott-Schottky plots of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films measured in 0.5 M Na$_2$SO$_4$ solution under dark condition.
Mo:BiVO₄ film had a quite high J value of 0.86 mA/cm² at 1.23 V_RHE. On the contrary, Al₂O₃/BiVO₄ and Al₂O₃/Mo:BiVO₄ films showed J values of 0.91 mA/cm² and 1.5 mA/cm² at 1.23 V_RHE, respectively. These results indicated that the ultra-thin Al₂O₃ layer promoted J values of intrinsic BiVO₄ and Mo:BiVO₄ films. Furthermore, the Co-Pi cocatalyst was deposited on the top surface of Al₂O₃/Mo:BiVO₄ films, showing the most enhanced J value of 1.85 mA/cm² at 1.23 V_RHE due to favorably hole transfer to the electrolyte under the cascading hole transferring phenomenon.

To determine photoactivities as a function of the illuminated wavelength of BiVO₄, Mo:BiVO₄, and Al₂O₃ deposited films, we quantitatively investigated the photoactivity as a function of wavelength of incident light referred to as incident photon-to-current conversion efficiency (IPCE). IPCE measurements were performed for BiVO₄, Mo:BiVO₄, Al₂O₃/BiVO₄, and Al₂O₃/Mo:BiVO₄ films using an applied potential of 1.23 V_RHE (Fig. 4b). IPCE can be generally expressed by the following equation [23]:

$$\text{IPCE} = \frac{1240J}{\lambda J_{\text{light}}}(\lambda > J_{\text{light}})$$ \hspace{1cm} (2)

where J is the measured photocurrent density at a specific wavelength, λ is the wavelength of incident light, and J_{light} is the measured irradiance at a specific wavelength. In comparison with the pristine BiVO₄ film, Mo:BiVO₄ films exhibited significantly enhanced IPCE over the entire UV and visible light region. Particularly, the onset wavelength to start to give a meaningful photo-response was tremendously shifted from 510 nm to 530 nm, further going to 550 nm (Al₂O₃/Mo:BiVO₄) and 570 nm (Co-Pi/Al₂O₃/Mo:BiVO₄). These results provide direct evidence showing increased visible light photoresponse of Mo:BiVO₄ film by Mo doping thanks to more survived photogenerated charges from the deposition of ultra-thin Al₂O₃ layer against the charge recombination process. In addition, the Mo:BiVO₄ film exhibited IPCE of 15.6% (@486 nm) whereas the BiVO₄ film had an IPCE of 5.7% (@486 nm). Al₂O₃ coated samples exhibited IPCE of 22% (Al₂O₃/Mo:BiVO₄) and 7% (Al₂O₃/BiVO₄) at the same wavelength, indicating that charge transfer/transportation events were very efficient in these Mo-doped and Al₂O₃-coated samples. Moreover, the Co-Pi deposited Al₂O₃/Mo:BiVO₄ film showed remarkably red-shifted IPCE curve, containing a shift of λ_max toward 500 nm having an IPCE value of 22.5% promoted by the more contribution of visible light-induced charges. Therefore, both Mo-doping and Al₂O₃ coating contributed to the improvement of PEC performance mainly coming from the more charges photogenerated from visible light.

To definitely examine the interfacial issues, electrolyte interface capacitance as a function of the applied potential under dark condition was measured using the electrochemical capacitive current scan method [24]. Results are presented in Fig. 5a. Both BiVO₄ and Mo:BiVO₄ films exhibit a peak centered at about +0.75 V_RHE previously characterized as evidence for a surface state by Bard et al [25]. However, these peaks disappeared after the deposition of ultra-thin Al₂O₃ layer, proving the role of surface passivation. Overall, capacitance values of BiVO₄ and Mo:BiVO₄ films were significantly decreased, mani-
festing that the insulating Al$_2$O$_3$ layer as an outermost layer could dramatically reduce charge storage in the BiVO$_4$ film, enabling fast charge transfer or blocking nearby films or electrolyte.

To investigate minutely the interfacial working condition according to Mo-doping and Al$_2$O$_3$ coating in the BiVO$_4$ film, EIS measurements under dark condition were conducted. Results are shown in Fig. 5b. Fig. 5b compares the Nyquist plots for BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ film containing fitted data using the suggested equivalent circuit in the inset of (b).

![Fig. 5](image)

Fig. 5. (a) Capacitance value as a function of the applied potential for BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films under dark condition and (b) Nyquist plots of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ film containing fitted data using the suggested equivalent circuit in the inset of (b).

in Fig. 6. The photovoltage-time (V-t) profile of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films and the decay lifetimes of each V-t spectra by fitting to a biexponential function with two-time constants were calculated [27].

$$y(t) = A_0 + A_1 e^{-t/\tau_1} + A_2 e^{-t/\tau_2}$$

$$\tau_m = \left(\tau_1 \tau_2 \right) / \left(\tau_1 + \tau_2 \right)$$

where τ_m is the harmonic mean of the lifetime, and the total half-life is $\log \left(2 \times \tau_m \right)$. The total half-life of BiVO$_4$, Mo:BiVO$_4$, Al$_2$O$_3$/BiVO$_4$, and Al$_2$O$_3$/Mo:BiVO$_4$ films was estimated to be 2.58s, 1.10s, 1.31 and 0.89s respectively. This result indicates that the Al$_2$O$_3$/BiVO$_4$ film shows shorter decay lifetime.
that the ultra-thin Al layer compared to their initial value as time went by. Reversely, ultra-thin Al\textsubscript{2}O\textsubscript{3} layer steadily reduced wormlike nanopores, showing uniformly coated nanoporous layer through the entire surface of BiVO\textsubscript{4} film. Overall, Al\textsubscript{2}O\textsubscript{3} layer showed the highest photocurrent density (1.5 mA/cm2) at 1.23 V\textsubscript{RHE}, followed by Al\textsubscript{2}O\textsubscript{3}/BiVO\textsubscript{4} film (0.91 mA/cm2), Mo:BiVO\textsubscript{4} film (0.86 mA/cm2), and BiVO\textsubscript{4} film (0.12 mA/cm2). This is from the enhanced electronic conductivity of Mo doping in the BiVO\textsubscript{4} film and coating of ultra-thin Al\textsubscript{2}O\textsubscript{3} layer to retard the charge recombination reaction as well as the beneficial hole transfer to the electrolyte. Herein, the Co-Pi layer as a cocatalyst was deposited on the Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4} film, displaying a photocurrent density of 1.85 mA/cm2 at 1.23 V\textsubscript{RHE} due to low interfacial resistance to promote favorable hole transfer to the electrolyte. The IPCE curve also showed the highest value of about 22.5\% at 500 nm for Co-Pi/Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4}, followed by 22% for Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4}, 7% for Al\textsubscript{2}O\textsubscript{3}/BiVO\textsubscript{4}, and 5.7\% for BiVO\textsubscript{4} at wavelength of 486 nm. From Mott-Schottky plot, Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4} film showed the highest electronic conductivity probably due to Mo doping and surface passivation of ultra-thin Al\textsubscript{2}O\textsubscript{3} layer at the defect or trap sites, leading to reduced electron-hole recombination. These results were similar to the trend of interfacial resistance (R\textsubscript{ct}) in the Nyquist plot obtained from EIS measurement, showing that Mo doping and the coating of Al\textsubscript{2}O\textsubscript{3} layer together induced the abrupt decrease of R\textsubscript{ct}, overall influencing the advancement of PEC activity. Taken together, these results indicate that coating or deposition of proper materials in the thin film can well as to favorably transfer of photogenerated holes to electrolyte. In particular, the interfacial resistance (R\textsubscript{ct}) was sharply reduced in the Mo-doped and Al\textsubscript{2}O\textsubscript{3} coated BiVO\textsubscript{4} film. This demonstrates that deposition of ultra-thin Al\textsubscript{2}O\textsubscript{3} layer on the top of BiVO\textsubscript{4} film can grant a favorable environment for charge transport/transfer in the film irrelevant to the presence or absence of doping.

4. Conclusions

BiVO\textsubscript{4} and Mo:BiVO\textsubscript{4} films were prepared by the facile sol-gel assisted spin-coating method. Ultra-thin Al\textsubscript{2}O\textsubscript{3} layer with a thickness of 2 nm was uniformly coated by the ALD process. All films were composed of differently sized porous area, separated from each other by thin grooves. Above these films, ultra-thin Al\textsubscript{2}O\textsubscript{3} layer steadily reduced wormlike nanopores, showing uniformly coated nanoporous layer through the entire surface of BiVO\textsubscript{4} film. Overall, Al\textsubscript{2}O\textsubscript{3} film exhibited the highest photocurrent density (1.5 mA/cm2 at 1.23 V\textsubscript{RHE}), followed by Al\textsubscript{2}O\textsubscript{3}/BiVO\textsubscript{4} film (0.91 mA/cm2), Mo:BiVO\textsubscript{4} film (0.86 mA/cm2), and BiVO\textsubscript{4} film (0.12 mA/cm2). This is from the enhanced electronic conductivity of Mo doping in the BiVO\textsubscript{4} film and coating of ultra-thin Al\textsubscript{2}O\textsubscript{3} layer to retard the charge recombination reaction as well as the beneficial hole transfer to the electrolyte. Herein, the Co-Pi layer as a cocatalyst was deposited on the Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4} film, displaying a photocurrent density of 1.85 mA/cm2 at 1.23 V\textsubscript{RHE} due to low interfacial resistance to promote favorable hole transfer to the electrolyte. The IPCE curve also showed the highest value of about 22.5\% at 500 nm for Co-Pi/Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4}, followed by 22% for Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4}, 7% for Al\textsubscript{2}O\textsubscript{3}/BiVO\textsubscript{4}, and 5.7\% for BiVO\textsubscript{4} at wavelength of 486 nm. From Mott-Schottky plot, Al\textsubscript{2}O\textsubscript{3}/Mo:BiVO\textsubscript{4} film showed the highest electronic conductivity probably due to Mo doping and surface passivation of ultra-thin Al\textsubscript{2}O\textsubscript{3} layer at the defect or trap sites, leading to reduced electron-hole recombination. These results were similar to the trend of interfacial resistance (R\textsubscript{ct}) in the Nyquist plot obtained from EIS measurement, showing that Mo doping and the coating of Al\textsubscript{2}O\textsubscript{3} layer together induced the abrupt decrease of R\textsubscript{ct}, overall influencing the advancement of PEC activity. Taken together, these results indicate that coating or deposition of proper materials in the thin film can
modify or alternate thin film to enhance its PEC performance.

Acknowledgement

This research was supported by Basic Science Research Capacity Enhancement project through Korea Basic Science Institute (National research Facilities and Equipment Center) grant funded by the Ministry of Education (2019RIA6C1010024) and the samples were treated by using ALD at Energy Convergence Core Facility in Chonma National University. This work was also supported by a grant (2018R1A6A1A03024334) of the Priority Research Centers Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology.

References