1.
Farley Maggie
Summit Decrees 6% Reduction in Main Global Warming Gases; Diplomacy: Delegates agree to cut six major pollutants below 1990 levels. Accord will change how nations produce and use power. Action on concessions requested by U.S. delayed, Los Angeles Times, Section Part: A, Start Page: 1. 1997.
2.
Larminie James
Lowry John
Electric Vehicle Technology Explained. 2003.John Wiley & Sons.
3.
Root Michael
The TAB Battery Book. 2011.McGrow-Hill.
4.
Buchmann Isidor
Batteries in a Portable World. 2001.Cadex Electronics Inc.
5. Source. 0000.
6. Transform Your Drive. 0000.
7. Source. 0000.
8. Source. 0000.
9. Source. 0000.
10.
Park Myounggu
Sun Heeyoung
Lee Hyungbok
Lee Junesoo
Cho. Jaephil
Lithium-Air Batteries: Survey on the Current Status and Perspectives Towards Automotive Applications from a Battery Industry Standpoint.
Advanced Energy Materials,
2012,
2, 780.
11.
Black Robert
Adams Brian
Nazar. L.F.
Non- Aqueous and Hybrid Li-O
2 Batteries.
Advanced Energy Materials,
2012,
2, 801.
12.
Hou Junbo
Yang Min
W. Ellis Michael
B. Moore Robert
Yi. Baolian
Lithium oxides precipitation in nonaqueous Li-air batteries.
Phys. Chem. Chem. Phys.,
2012,
14, 13487.
13.
Cheng H.
Scott. K.
Carbon-supported manganese oxide nanocatalysts for rechargeable lithium-air batteries.
J. Power Sources,
2010,
195, 1370.
14.
Mantell C. L.
Batteries and Energy Systems. 2nd Edition. 1983.New York, McGraw-Hill.
15. . Source. 0000.
16.
L. Robert
Jr. Burwell
Manual of Symbols and Terminology for Physicochemical Quantities and Units - Appendix II Heterogeneous Catalysis. Advances in Catalysis, 1977, 26, 351.
17.
Louis Hegedus L.
W. McCabe Robert
Catalyst Poisoning. 1984.New York, Marcel Dekker.
18.
Hughes R.
Deactivation of Catalysts. 1984.New York, Academic Press.
19. .
Ertl G.
Knozinger H.
Weitkamp J.
Handbook of Heterogeneous Catalysis. 1997, 1–48.
20.
Happel John
Hnatow Miguel
Bajars Laimonis
Base Metal Oxide Catalysts. 1977.New York, Marcel Dekker.
21.
S. Arico A.
Srinivasan S.
V. Antoucci. Fuel cells, 2001, 2, 133.
22.
Wang. Bin
Recent development of non-platinum catalysts for oxygen reduction reaction.
Journal of Power Sources,
2005,
152, 1.
23.
Zhang Lei
Zhang Jiujun
P. Wilkinson David
Wang Haijiang
Progress in preparation of non-noble electrocatalysts for PEM fuel cell reactions.
Journal of Power Sources,
2006,
156, 171.
24.
Bogdanoff P.
Herrmann I.
Hilgendorff M.
Dorbandt I.
Fiechter S.
Tributsch. H.
Probing Structural Effects of Pyrolysed CoTMPP-based Electrocatalysts for Oxygen Reduction via New Preparation Strategies. J. New Mater. Electrochem. Syst., 2004, 7, 85.
25.
Herrmann I.
Bruser V.
Fiechter S.
Kersten H.
Bogdanoff. P.
Electrocatalysts for Oxygen Reduction Prepared by Plasma Treatment of Carbon-Supported Cobalt Tetramethoxyphenylporphyrin.
J. Electrochem. Soc.,
2005,
152, A2179.
26. .
Hampden-Smith M.
Atanassova P.
Kodas. T.T.
Wielstich W.
Gasteiger H.A.
Lamm A.
Fuel Cell Technology and Application;Handbook of Fuel Cells- Fundamentals, Technology and Applications, Vol. 3. 2003.
27.
Qu L.
Liu Y.
Baek J.B.
Dai. L.
Nitrogen-Doped Graphene as Efficient Metal-Free Electrocatalyst for Oxygen Reduction in Fuel Cells.
ACS Nano,
2010,
4, 1321.
28.
Gong K.
Du F.
Xia Z.
Durstock M.
Dai. L.
Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction.
Science,
2009,
323, 760.
29.
William H.
Valdecir A.
Gonzalez. R.
Electrochim. Acta,
2002,
47, 3715.
30.
Deivaraj T.C.
Lee. J.Y.
J. Power Sources,
2005,
142, 43.
31.
Yang B.
Lu Q.
Wang Y.
Zhang L.
Lu J.
Liu. P.
Chem. Mater.,
2003,
15, 3552.
32.
Friedrich K.A.
Geyzers L.P.
Dickinson A.J.
Stimming. U.
J. Electroanal. Chem., 2003, 524/525, 262.
33.
Takasu Y.
Fujiwara T.
Murakami Y.
Sasaki K.
Oguri M.
Asaki T.
Sugimoto. W.
J. Electrochem. Soc.,
2000,
147, 4421.
34.
Dickinson A.J.
Carrette L.P.L.
Collins J.A.
Friedrich K.A.
Stimming. U.
Electrochim. Acta,
2002,
47, 3733.
35.
Che Guangli
Lakshmi Brinda B.
Fisher Ellen R.
Martin. Charles R.
Carbon nanotubule membranes for electrochemical energy storage and production.
Nature,
1998,
393, 346.
36.
Cheng H.
Scott. K.
Selection of oxygen reduction catalysts for rechargeable lithium-airbatteries-Metal or oxide?
Applied Catalysis B: Environmental,
2011,
108/109, 140.
37.
Guo J.W.
Zhao T.S.
Prabhuram J.
Chen R.
Wong. C.W.
Preparation and characterization of a PtRu/C nanocatalyst for direct methanol fuel cells.
Electrochimica Acta,
2005,
51, 754.
38. .
Tsurumi K.
Nakamura T.
Sato A.
US Patent 4,956,331. 1990.
39.
Antolini A.
Cardellini. F.
Formation of carbon supported PtRu alloys: an XRD analysis.
Journal of Alloys and Compounds,
2001,
315, 118.
40.
Lust E.
Hark E.
Nerut J.
Vaarmets. K.
Pt and Pt–Ru catalysts for polymer electrolyte fuel cells deposited onto carbide derived carbon supports.
Electrochimica Acta,
2013,
101, 130.
41.
Ma X.
Meng H.
Cai M.
Shen. P.K.
Bimetallic carbide nanocomposite enhanced Pt catalyst with high activity and stability for the oxygen reduction reaction.
J. Am. Chem. Soc.,
2012,
134, 1954.
42.
Meng H.
Shen. P.K.
J. Phys. Chem. B,
2005,
109, 22705.
43.
Savadogo O.
Lee K.
Oishi K.
Mitsushima S.
Kamiya N.
Ota. K.-I.
New palladium alloys catalyst for the oxygen reduction reaction in an acid medium.
Electrochemistry Communications,
2004,
6, 105.
44.
Deng C.Z.
Dignam. M.J.
Sputtered Cobalt-Carbon- Nitrogen Thin Films as Oxygen Reduction Electrocatalysts.
J. Electrochem. Soc.,
1998,
145, 3507.
45.
Prabhuram J.
Wang X.
Hui C.L.
Hsing. T.
Synthesis and characterization of surfactant-stabilized Pt/C nanocatalysts for fuel cell applications.
Journal of Physical Chemistry B,
2003,
107, 11057.
46.
Kim T.
Takahashi M.
Nagai M.
Kobayashi K.
Electrochem. Acta, 2004, 50, 813.
47.
Xue X.
Lu T.
Liu C.
Xing. W.
Chem. Commun., 2005, 12, 1601.
48.
Narayanan R.
El-Sayed. M.A.
Carbon-supported spherical palladium nanoparticles as potential recyclable catalysts for the Suzuki reaction.
Journal of Catalysis,
2005,
234, 348.
49.
Wang C.
Daimon H.
Lee Y.M.
Kim J.M.
Sun. S.
Synthesis of Monodisperse Pt Nanocubes and Their Enhanced Catalysis for Oxygen Reduction.
J. Am. Chem. Soc.,
2007,
129, 6974.
50.
Okaya K.
Yano H.
Kakinuma K.
Watanabe M.
Uchida. H.
Temperature Dependence of Oxygen Reduction Reaction Activity at Stabilized Pt Skin-PtCo Alloy/ Graphitized Carbon Black Catalysts Prepared by a Modified Nanocapsule Method.
ACS Appl. Mater. Interfaces,
2012,
4, 6982.
51.
Wang X.
Hsing. I.
Electrochem. Acta, 2002, 47, 2897.
52.
Paulus U.A.
Endruschat U.
Feldmeyer G.J.
Schmidt T.J.
Bonnemann H.
Behm. R.J.
J. Catal.,
2000,
195, 383.
53.
He Hui
Niu Wei
Mahootcheian Asl Nina
Salim Jason
Chen Rongrong
Kim. Youngsik
Effects of aqueous electrolytes on the voltage behaviors of rechargeable Liair batteries.
Electrochimica Acta,
2012,
67, 87.
54.
Kraytsberg Alexander
Ein-Eli. Yair
Review on Li-air batteries-Opportunities limitations and perspective.
Journal of Power Sources,
2011,
196, 886.
55.
Lee Jang-Soo
Kim Sun Tai
Cao Ruiguo
Choi Nam-Soon
Liu Meilin
Lee Kyu Tae
Cho. Jaephil
Metal- Air Batteries with High Energy Density: Li-Air versus Zn-Air.
Advanced Energy Materials,
2011,
1, 34.
56.
Ren X.
Zhang S.S.
Tran D.T.
Read J.
J. Mater. Chem,
2011,
21, 10118.
57.
Capsoni Doretta
Bini Marcella
Ferrari Stefania
Quartarone Eliana
Mustarelli. Piercarlo
Recent advances in the development of Li-air batteries.
Journal of Power Sources,
2012,
220, 253.
58.
Tran Chris
Yang Xiao-Qing
Qu. Deyang
Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity.
Journal of Power Sources,
2010,
195, 2057.
59.
Takasu Y.
Kawaguchi T.
Sugimoto W.
Murakami Y.
Electrochim. Acta,
2003,
48, 3861.
60.
Uchida M.
Fukuoka Y.
Sugawara Y.
Ohara H.
Ohta A.
J. Electrochem. Soc,
1998,
145, 3708.
61.
Anderson M. L.
Stroud R. M.
Rolison. D. R.
Nano Lett.,
2002,
2, 235.
62.
Park G.
Yang T.
Yoon Y.
Lee W.
Kim C.
Int. J. Hydrogen Energy,
2003,
28, 645.
63.
Mastragostino M.
Mossiroli A.
Soavi. F.
J. Electrochem. Soc.,
2004,
151, 1919.
64.
Rao V.
Simonov P.A.
Savinova E.R.
Plaksin G.V.
Cherepanova S.
Kryukova G.
Stimming. U.
Journal of Power Sources,
2005,
145, 178.
65.
Wang Z.
Yin G.
Shi. P.
Carbon,
2005,
44, 133.
66.
Chan K.Y.
Ding J.
Ren J.
Cheng S.
Tsang K.Y.
J. Mater. Chem.,
2004,
14, 505.
67.
Liu Hansan
Song Chaojie
Zhang Lei
Zhang Jiujun
Wang Haijiang
Wilkinson David P.
A review of anode catalysis in the direct methanol fuel cell.
Journal of Power Sources,
2006,
155, 95.
68.
Tran Chris
Yang Xiao-Qing
Qu Deyang
Investigation of the gas-diffusion-electrode used as lithium/air cathode in non-aqueous electrolyte and the importance of carbon material porosity.
Journal of Power Sources,
2010,
195, 2057.
69.
Lu Chun-Yaung
Henkelman. Graeme
Role of Geometric Relaxation in Oxygen Binding to Metal Nanoparticles.
J.Phys.Chem.Lett,
2011,
2, 1237.
70.
Stamenkovic Vojislav
Mun Bongjin Simon
Mayrhofer Karl J.J.
Ross Philip N.
Markovic Nenad M.
Rossmeisl Jan
Greeley Jeff
Norskov Jens K.
Changing the Activity of Electrocatalysts for Oxygen Reduction by Tuning the Surface Electronic Structure.
Angew.Chem.Int.Ed.,
2006,
45, 2897.
71.
Debart Aurelie
Bao Jianli
Armstrong Graham
Bruce Peter G.
An O
2 cathode for rechargeable lithium batteries: The effect of a catalyst.
Journal of Power Sources,
2007,
174, 1177.
72.
Debart Aurelie
Paterson Allan J.
Bao Jianli
Bruce. Peter G.
α-MnO
2 Nanowires: A catalyst for the O
2 Electrode in Rechargeable Lithium Batteries.
Angew. Chem., Int. Ed.,
2008,
47, 4521.
73.
Chung Ku-Bong
Shin Ju-Kyung
Jang Tae-Young
Noh Dong-Kyun
Tak Yongsug
Baeck. Sung-Hyeon
Preparation and analyses of MnO2 carbon composites for rechargeable lithium-air battery. Rev. Adv. Mater. Sci., 2011, 28, 54.
74.
Lu Yi-Chun
Gasteiger Hubert A.
Parent Michael C.
Chiloyan Vazrik
Yang Shao-Horn.
The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries.
Electrochemical and Solid-State Letters,
2010,
13, A69.
75.
Lu Yi-Chun
Xu Zhichuan
Gasteiger Hubert A.
Chen Shuo
Kimberly Hamad-Schifferli
Yang Shao-Horn.
Platinum-Gold Nanoparticles: A Highly Active Bifunctional Electrocatalyst for rechargeable Lithium-Air Batteries.
Journal of the American Chemical Society,
2010,
132, 12170.
76.
Oh Si Hyoung
Nazar. Linda F.
Oxide Catalysts for Rechargeable High-Capacity Li-O2 Batteries.
Advanced Energy Materials,
2012,
2, 903.
77.
Oh Si Hyoung
Black Robert
Pomerantseva Ekaterina
Lee Jin-Hyon
Nazar d Linda F.
Synthesis of a metallic mesoporous pyrochlore as a catalyst for lithium-O
2 batteries.
Nature chemistry,
2012,
4, 1004.
78.
Thapa Arjun Kumar
Saimen Kazuki
Ishihara Tatsumi
Pd/MnO
2 Air Electrode Catalyst for Recharegable Lithium/Air Battery.
Electrochem. Solid- State Lett.,
2010,
13, A165.
79.
Thapa Arjun Kumar
Ishihara Tatsumi
Mesoporous α-MnO
2/Pd catalyst air electrode for rechargeable lithiumair battery.
J. Power Sources,
2011,
196, 7016.
80.
Thapa Arjun Kumar
Hidaka Yuiko
Hagiwara Hidehisa
Ida Shintaro
Ishihara Tatsumi
Mesoporous α-MnO
2 Air Electrode Modified with Pd for Rechargeability for Lithium-Air Battery.
J. Electrochem. Soc.,
2011,
158, A1483.
81.
Trahey L.
Johnson C.S.
Vaughey J.T.
Kang S.-H.
Hardwick L.J.
Freunberger S.A.
Bruce P.G.
Thackeray. M.M.
Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li-O
2 Cells.
Electrochem. Solid-State Lett.,
2011,
14, A64.
82.
Xiao Jie
Xu Wu
Wang Deyu
Zhang Ji-Guang
Hybrid Air-Electrode for Li/Air Batteries.
J. Electrochem. Soc.,
2010,
157, A294.
83.
Ogasawara Takeshi
Debart Aurelie
Holzapfel Michael
Novák Petr
Bruce Peter G.
Rechargeable Li
2O
2 Electrode for Lithium Batteries.
J. Am. Chem. Soc.,
2006,
128, 1390.
84.
Li Jiaxin
Wang Ning
Zhao Yi
Ding Yunhai
Guan Lunhui
MnO
2 Nanoflakes coated on multi-walled carbon nanotubes for rechargeable lithium-air batteries.
Electrochem. Commun.,
2011,
13, 698.
85.
Li Yongliang
Wang Jiajun
Li Xifei
Liu Jian
Geng Dongsheng
Yang Jinli
Li Ruying
Sun. Xueliang
Nitrogen-doped carbon nanotubes as cathode for lithiumair batteries.
Electrochem. Commun.,
2011,
13, 668.
86.
Kichambare Padmakar
Kumar Jitendra
Rodrigues Stanley
Kumar Binod
Electrochemical performance of highly mesoporous nitrogen doped carbon cathode in lithium-oxygen batteries.
J. Power Sources,
2011,
196, 3310.
87.
Sun Bing
Wang Bei
Su Dawei
Xiao Linda
Ahn Hyojun
Wang Guoxiu
Graphene nanosheets as cathode catalysts for lithium-air batteries with an enhanced electrochemical performance.
Carbon,
2012,
50, 727.
88.
Yang Yin
Sun Qian
Li Yue-Sheng
Li Hong
Fu Zheng- Wen
Nanostructured Diamond Like Carbon Thin Film Electrodes for Lithium-Air Batteries.
Journal of The Electrochemical Society,
2011,
158, B1211.
89. .
Lee Jin-Hyon
Black Robert
Popov Guerman
Pomerantseva Ekaterina
Nan Feihong
Botton Gianluigi A.
Nazar Linda F.
The role of vacancies and defects in Na
0.44MnO
2 nanowire catalysts for lithium-oxygen batteries.
Energy & Environmental Science,
2012, .
90.
Black Robert
Lee Jin-Hyon
Adams Brian
Mims Charles A.
Nazar Linda F.
The Role of Catalysts and Peroxide Oxidation in Li-O
2 Batteries.
Angew. Chem. Int. Ed.,
2013,
52, 392.
91. .
Su Dawei
Kim Hyun-Soo
Kim Woo-Seong
Wang Guoxiu
A study of PtxCoy alloy nanoparticles as cathode catalysts for lithium-air batteries with improved catalytic activity.
Journal of Power Sources,
2012.
92.
Wang Long
Zhao Xin
Lu Yuhao
Xu Maowen
Zhang Dawei
Ruoff Rodney S.
Stevenson Keith J.
Goodenough John B.
CoMn
2O
4 Spinel Nanoparticles Grown on Graphene as Bifunctional Catalysts for Lithium-Air Batteries.
Journal of The Electrochemical Society,
2011,
158, A1379.
93. .
Yoon Dockyoung
Kim Kyongsik
Park Myounggu
Kim Sangjin
Sun Heeyoung
Lee Hyungbok
Lee Junesoo
An effort to Understand the Basic Characteristics of Hybrid Li-air Performance In: ECS Fall Meeting; Hawaii, US.
94.
Harding Jonathan R.
Lu Yi-Chun
Tsukada Yasuhiro
Yang Shao-Horn
Evidence of catalyzed oxidation of Li
2O
2 for rechargeable Li-air battery applications.
Physical Chemistry Chemical Physics,
2012,
14, 10540.
95.
McCloskey Bryan D.
Scheffler Rouven
Speidel Angela
Bethune Donald S.
Shelby Robert M.
Luntz A.C.
On the Efficacy of Electrocatalysis in Nonaqueous Li-O
2 Batteries.
Journal of the American Chemical Society,
2011,
133, 18038.
96.
Zhang Sheng S.
Foster Donald
Read Jeffrey
Discharge characteristics of a non-aqueous electrolyte Li/O
2 battery.
J. Power Sources,
2010,
195, 1235.
97.
Lu Yi-Chun
Gasteiger Hubert A.
Crumlin Ethan
McGuire Robert
Yang Sho-Horn.
Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li- Air Batteries.
Journal of the Electrochemical Society,
2010,
157, A1016.
98.
Chen Jingzhe
Hummelshoj Jens S.
Thygesen Kristian S.
Myrdal Jon S.G.
Norskov Jens K.
Vegge Tejs
The role of transition metal interfaces on the electronic transport in lithium-air batteries.
Catalysis Today,
2011,
165, 2.
99.
Lu Yi-Chun
Gasteiger Hubert A.
Yang Shao-Horn.
Catalytic Activity Trends of Oxygen Reduction Reaction for Nonaqueous Li-Air Batteries.
Journal of the American Chemical Society,
2011,
133, 19048.
100.
Zhang G.Q.
Zheng J.P.
Liang R.
Zhang C.
Wang B.
Hendrickson M.
Plichta E.J.
Lithium-Air Batteries Using SWNT/CNF Bucky-papers as Air Electrodes.
Journal of the Electrochemical Society,
2010,
157, A953.
101.
Kim Kinoshita
Carbon. 1998.New York, John Wiley & Sons.
102. .
Stiles Alvin B.
Catalyst Supports and Supported Catalysts. 1987.Boston, Butterworths.
103.
Cao Ruiguo
Lee Jang-Soo
Liu Meilin
Cho Jaephil
Recent Progress in Non-Precious Catalysts for Metal-Air Batteries.
Advanced Energy Materials,
2012,
2, 816.
104.
Jorissen Ludwig
Bifunctional oxygen/air electrodes.
Journal of Power Sources,
2006,
155, 23.
105.
Bidault F.
Brett D.J.L.
Middleton P.H.
Brandon N.P.
Review of gas diffusion cathodes for alkaline fuel cells.
Journal of Power Sources,
2009,
187, 39.
106. .
Moore John W.
Stanitski Conrad L.
Jurs Peter C.
Chemistry. Second Edition. 2005.Toronto Canada, Thomson.
107.
Lu Y.-C.
Gasteiger H. A.
Crumlin E.
McGuire R.
Shao-Horn. Y.
Electrocatalytic Activity Studies of Select Metal Surfaces and Implications in Li-air Batteries.
J. Electrochem. Soc.,
2010,
157, A1016.
108.
Debart A.
Bao J.
Armstrong G.
Bruce P.G.
An O
2 Cathode for Rechargeable Lithium Batteries: The effect of a Catalyst.
J. Power Sources,
2007,
174, 1177.
109.
Debart A.
Paterson A.J.
Bao J.
Bruce P.G.
α-MnO
2 Nanowires: A catalyst for the O
2 Electrode in Rechargeable Lithium Batteries.
Angew. Chem., Int. Ed.,
2008,
47, 4521.
110.
Lu Y.-C.
Gasteiger H.A.
Parent M. C.
Chiloyan V.
Shao-Horn. Y.
The Influence of Catalysts on Discharge and Charge Voltages of Rechargeable Li-Oxygen Batteries.
Electrochem. Solid-State Lett.,
2010,
13, A69.
111.
Lu Y.-C.
Xu Z.
Gasteiger H. A.
Chen S.
Hamad- Schifferli K.
Shao-Horn. Y.
Platinum-Gold nanoparticles: A Highly Active Bifunctional Electrocatalyst for Rechargeable Lithium-Air Batteries.
J. Am. Chem. Soc.,
2010,
132, 12170.
112. .
Alexander Kraytsberg
Yair Ein-Eli
The impact of nanoscaled materials on advanced metal-air battery systems. Nanoenergy, 2013.
113.
Thiele D.
Colmenarejo E. Lopez-Camacho
Grobety B.
Zuttel. A.
Synthesis of carbon nanotubes on La
0.6Sr
0.4CoO
3 as substrate.
Diamond & Related Materials,
2009,
18, 34.
114. .
Shao Yuyan
Zhang Sheng
Wang Chongmin
Nie Zimin
Liu Jun
Wang Yong
Lin Yuehe
Highly durable graphene nanoplatelets supported Pt nanocatalysts for oxygen reduction.
Journal of Power Sources,
2010,
195, 4600.
115. .
Fampiou Ioanna
Ramasubramaniam Ashwin
Binding of Pt Nanoclusters to Point Defects in Graphene: Adsorption, Morphology, and Electronic Structure.
Journal of Physical Chemistry C,
2012,
116, 6543–6555.
116. .
Mitchell Robert R.
Gallant Betar M.
Thompson Carl V.
Yang Shao-Horn.
All-carbon-nanofiber electrodes for high-energy rechargeable Li-O
2 batteries.
Energy & Environmental Science,
2011,
4, 2952–2958.
117.
Benbow E. M.
Kelly S. P.
Zhao L.
Reutenauer J. W.
Suib. S. L.
Oxygen Reduction Properties of Bifunctional a-Manganese Oxide Electrocatalysts in Aqueous and Organic Electrolytes.
The Journal of Physical Chemistry C,
2011,
115, 22009.
118.
Jin Lei
Xu Linping
Morein Christine
Chen Chun-hu
Lai Monique
Dharmarathna Saminda
Dobley Arthur
Suib Steven L.
Titanium Containing α-MnO
2(TM) Hollow Spheres: One-step Synthesis and Catalytic Activities in Li/Air Batteries and Oxidative Chemical Reactions.
Advanced Functional Materials,
2010,
20, 3373.
119.
Kou Rong
Shao Yuyan
Wang Donghai
Engelhard Mark H.
Kwak Ja Hun
Wang Jun
Viswanathan Vilayanur V.
Wang Chongmin
Lin Yuehe
Wang Yong
Aksay Ilhan A.
Liu Jun
Enhanced activity and stability of Pt catalysts on functionalized graphene sheets for electrocatalytic oxygen reduction.
Electrochemical Communications,
2009,
11, 954.
120.
Yumura Takashi
Kimura Keisuke
Kobayashi Hisayoshi
Tanaka Ryo
Okumura Norio
Yamabe Tokio
The use of nanometer-sized hydrographene species for support material for fuel cell electrode catalysts:a theoretical proposal.
Physical Chemistry Chemical Physics,
2009,
11, 8275.
121.
Gilliam Ryan J.
Kirk Donald W.
Thorpe Steven J.
Influence of Structural Microstructural and Electrical Properties on Electrocatalytic Performance at the Nanoscale.
Electrocatalysis,
2011,
2, 1.
122.
Moshfegh A.Z.
Nanoparticle catalysts.
Journal of Physics D: Applied Physics,
2009,
42, 23301.
123.
Tritsaris G.A.
Greeley J.
Rossmeisl J.
Norskov J.K.
Atomic-Scale Modeling of Particle Size Effects for the Oxygen Reduction Reaction on Pt.
Catalysis Letters,
2011,
141, 909.
124.
Gasteiger Hubert A.
Kocha Shyam S.
Sompalli Bhaskar
Wagner Frederick T.
Activity benchmarks and requirements for Pt Pt-alloy and non-Pt oxygen reduction catalysts for PEMFCs.
Applied Catalysis B: Environmental,
2005,
56, 9.
125.
Shao Minhua
Shoemaker Krista
Peles Amra
Kaneko Keiichi
Protsailo Lesia
Pt Monolayer on Porous Pd-Cu Alloys as Oxygen Reduction Electrocatalysts.
Journal of the American Chemical Society,
2010,
132, 9253.
126.
Perez-Alonso Francisco J.
McCarthy David N.
Nierhoff Anders
Hernandez-Fernandez Patricia
Strebel Christian
Stephens Ifan E.L.
Nielsen Jane H.
Chorkendorff Ib
The Effect of Size on the Oxygen Electroreduction Activity of Mass-Selected Platinum Nanoparticles.
Angewandte Chemie International Edition,
2012,
51, 4641.
127.
Stephens Ifan E.L.
Bondarenko Alexander S.
Gronbjerg Ulrik
Rossmeisl Jan
Chorkendorff Ib
Understanding the electrocatalysis of oxygen reduction on platinum and its alloys.
Energy and Environmental Science,
2012,
5, 6744.
128.
Shao Yuyan
Park Sehkyu
Xiao Jie
Zhang Ji-Guang
Wang Yong
Liu Jun
Electrocatalysts for Nonaqueous Lithium-Air Batteries: Status Challenges and perspective.
ACS Catalysis,
2012,
2, 844.
129.
Aurbach Doron
Zinigrad Ella
Cohen Yaron
Teller Hanan
A short review of failure of lithium metal and lithiated graphite anodes in liquid electrolyte solutions.
Solid State Ionics,
2002,
148, 405.
130. .
Nazar Linda F.
Overcoming the Challenges in Li-O2 Batteries. 2012.SK innovation.
131.
Black Robert
Oh Si Hyoung
Lee Jin-Hyon
Yim Taeeun
Adams Brian
Nazar Linda F.
Screening for Superoxide Reactivity in Li-O
2 Batteries: Effect on Li
2O
2/LiOH Crystallization.
Journal of the American Chemical Society,
2012,
134, 2902.
132.
Laoire Cormac O.
Mukerjee Sanjeev
Abraham K.M.
Elucidating the Mechanism of Oxygen Reduction for Lithium-Air Battery Applications.
The Journal of Physical Chemistry C,
2009,
113, 20127.
133. .
Yoo Eunjoo
Zhou Haoshen
Fe phthalocyanine supported by graphene nanosheet as catalyst in Li-air battery with the hybrid electrolyte.
Journal of Power Sources,
2013.
134.
Ghamouss Fouad
Mallouki Mohamed
Bertolotti Bruno
Chikh Linda
Vancaeyzeele Cedric
Alfonsi Severine
Fichet Odile
Long lifetime in concentrated LiOH aqueous solution of air electrode protected with interpenetrating polymer network membrane.
Journal of Power Sources,
2012,
197, 267.
135.
Bryantsev Vyacheslav S.
Giordani Vincent
Walker Wesley
Blanco Mario
Zecevic Strahinja
Sasaki Kenji
Uddin Jasim
Addison Dan
Chase Gregory V.
Predicting Solvent Stability in Aprotic Electrolyte Li–Air Batteries: Nucleophilic Substitution by the Superoxide Anion Radical (O
2 Π).
Journal of Physical Chemistry A,
2011,
115, 12399.
136.
Karan Naba K.
Balasubramanian Mahalingam
Fister Timothy T.
Burrell Anthony K.
Du Peng
Bulk- Sensitive Characterization of the Discharged Products in Li-O
2 Batteries by Nonresonant Inelastic X-ray Scattering.
Journal of Physical Chemistry C,
2012,
116, 18132.
137.
Overbury S. H.
Schwartz Viviane
Mullins David R.
Yan Wenfu
Dai Sheng
Evaluation of the Au size effect: CO oxidation catalyzed by Au/TiO
2.
Journal of Catalysis,
2006,
241, 56.
138.
Freunberger Stefan A.
Chen Yuhui
Peng Zhangquan
Griffin John M.
Hardwick Laurance J.
Barde Fanny
Novak Petr
Bruce Peter G.
Reactions in the Rechargeable Lithium-O
2 Battery with Alkyl Carbonate Electrolytes.
Journal of the American Chemical Society,
2011,
133, 8040.
139.
Chen Yuhui
Freunberger Stefan A.
Peng Zhangquan
Barde Fanny
Bruce Peter G.
Li-O
2 Battery with a Dimethylformamide Electrolyte.
Journal of the American Chemical Society,
2011,
134, 7952.
140.
Oh Si Hyoung
Yim Taeeun
Pomerantseva Ekaterina
Nazar Linda F.
Decomposition Reaction of Lithium Bis(oxalate)borate in the Rechargeable Lithium-Oxygen Cell.
Electrochemical and Solid-State Letters,
2011,
14, A185.
141.
McCloskey B.D.
Bethune D.S.
Shelby R.M.
Girishkumar G.
Luntz A.C.
Solvents' critical Role in Nonaqueous Lithium-Oxygen Battery Electrochemistry.
The Journal of Physical Chemistry Letters,
2011,
2, 1161.
142.
Peng Zhangquan
Freunberger Stefan A.
Hardwick Laurence J.
Chen Yuhui
Giordani Vincent
Barde Fanny
Novak Petr
Graham Duncan
Tarascon Jean-Marie
Bruce Peter G.
Oxygen Reactions in a Non-Aqueous Li
+ Electrolyte.
Angewandte Chemie,
2011,
50, 6351.
143.
Hardwick Laurence J.
Bruce Peter G.
The pursuit of rechargeable non-aqueous lithium-oxygen battery cathodes.
Current Opinion in Solid State and Materials Science,
2012,
16, 178.
144.
Hassoun Jusef
Croce Fausto
Armand Michel
Scrosati Bruno
Investigation of the O
2 Electrochemistry in a polymer Electrolyte Solid-State Cell.
Angewandte Chemie International Edition,
2011,
50, 2999.
145.
Sawyer Donald T.
Oxygen Chemistry. 1991.New York, Oxford University Press.
146.
McCloskey B.D.
Speidel A.
Scheffler R.
Miller D.C.
Viswanathan V.
Hummelshoj J.S.
Norskov J.K.
Luntz A.C.
Twin Problems of Interfacial Carbonate Formation in Nonaqueous Li-O
2 Batteries.
The Journal of Physical Chemistry Letters,
2012,
3, 997.
147.
McCloskey B. D.
Bethune D. S.
Shelby R. M.
Mori T.
Scheffler R.
Speidel A.
Sherwood M.
Luntz A. C.
Limitations in Rechargeability of Li-O
2 Batteries and Possible Origins.
The Journal of Physical Chemistry Letters,
2012,
3, 3043.
148.
Freunberger Stefan A.
Chen Yuhui
Peng Zhangquan
Griffin John M.
Hardwick Laurence J.
Barde Fanny
Novak Petr
Bruce Peter G.
Reactions in the Rechargeable Lithium-O
2 Battery with Alkyl Carbonate Electrolytes.
Journal of the America Chemical Society,
2011,
133, 8040.
149.
Freunberger Stefan A.
Chen Yuhui
Drewett Nicholas E.
Hardwick Laurence J.
Barde Fanny
Bruce Peter G.
The Lithium-Oxygen Battery with Ether-Based Electrolytes.
Angew. Chem., Int. Ed.,
2011,
50, 8609.
150.
Veith Gabriel M.
Dudney Nancy J.
Howe Jane
Nanda Jagjit
Spectroscopic Characterization of Solid Discharge Products in Li-Air Cells with Aprotic Carbonate Electrolytes.
The Journal of Physical Chemistry C,
2011,
115, 14325.
151.
Wang Hui
Xie Kai
Investigation of oxygen reduction chemistry in ether and carbonate based electrolytes for Li-O
2 batteries.
Electrochimica Acta,
2012,
64, 29.
152.
Assary Rajeev S.
Curtiss Larry A.
Redfern Paul C.
Zhang Zhengcheng
Amine Khalil
Computational Studies of Polysiloxanes: Oxidation Potentials and Decomposition Reactions.
The Journal of Physical Chemistry C,
2011,
115, 12216.
153.
McCloskey Bryan D.
Scheffler Rouven
Speidel Angela
Girishkumar Girish
Luntz Alan C.
On the Mechanism of Nonaqueous Li-O
2 Electrochemistry on C and Its Kinetic Overpotentials: Some Implications for Li- Air Batteries.
The Journal of Physical Chemistry C,
2012,
116, 23897.
154.
Li Yunfeng
Huang Kan
Xing Yangchuan
A hybrid Liair battery with buckypaper air cathode and sulfuric acid electrolyte.
Electrochimica Acta,
2012,
81, 20.
155.
Shimonishi Y.
Zhang T.
Johnson P.
Imanishi N.
Hirano A.
Takeda Y.
Yamamoto O.
Sammes N.
A study on lithium/air secondary batteries-Stability of NASICONtype glass ceramics in acid solutions.
Journal of Power Sources,
2010,
195, 6187.
156.
Li Longjun
Zhao Xinsheng
Manthiram Arumugam
A dual-electrolyte rechargeable Li-air battery with phosphate buffer catholyte.
Electrochemistry Communications,
2012,
14, 78.
157.
Markovic N.M.
Ross P.N.
Surface science studies of model fuel cell electrocatalysts.
Surface Science Reports,
2002,
45, 117.
158.
Yang Kyung Shik
Mul Guido
Moulijn Jacob A.
Electrochemical generation of hydrogen peroxide using surface area-enhanced Ti-mesh electrodes.
Electrochimica Acta,
2007,
52, 6304.
159.
Qiang Zhimin
Chang Jih-Hsing
Huang Chin-Pao
Electrochemical generation of hydrogen peroxide from dissolved oxygen in acidic solutions.
Water Research,
2002,
36, 85.
160.
He Ping
Wang Yonggang
Zhou Haoshen
The effect of alkalinity and temperature on the performance of lithiumair fuel cell with hybrid electrolytes.
Journal of Power Sources,
2011,
196, 5611.
161.
Bagotzky V.S.
Khrushcheva E.I.
Tarasevich M.R.
Shumilova N.A.
Corrosion of platinum catalysts in alkaline solutions.
Journal of Power Sources,
1982,
8, 301.
162.
Kiros Y.
Lindstrom O.
Kaimakis T.
Cobalt and cobaltbased macrocycle blacks as oxygen-reduction catalysts in alkaline fuel cells.
Journal of Power Sources,
1993,
45, 219.
163.
Hasegawa Satoshi
Imanishi Nobuyuki
Zhang Tao
Xie Jian
Hirano Atsushi
Takeda Yasuo
Yamamoto Osamu
Study on lithium/air secondary batteries - Stability of NASICON-type lithium ion conducting glass - ceramics with water.
Journal of power sources,
2009,
189, 371.
164.
Zhang Tao
Imanishi Nobuyuki
Hasegawa Satoshi
Hirano Atsushi
Xie Jian
Takeda Yasuo
Yamamoto Osamu
Sammes Nigel
Li/Polymer Electrolyte/ Water Stable Lithium-Conducting Glass Cermaics Composite for Lithium-Air Secondary Batteries with an Aqueous Electrolyte. Journal of The Electrochemical Society, 2008, 155, A962.
165.
Christensen Jake
Albertus Paul
Carrera Roel S. Sanchez-
Lohmann Timm
Kozinsky Boris
Liedtke Ralf
Ahmed Jasim
Kojic Aleksandar
A Critical Reivew of Li/Air Batteries.
Journal of The Electrochemical Society,
2012,
159, R1.
166.
Kuboki Takashi
Okuyama Tetsuo
Ohsaki Takahisa
Takami Norio
Lithium-air batteries using hydrophobic room temperature ionic liquid electrolyte.
Journal of Power Sources,
2005,
146, 766.
167.
Yang Xin-hui
He Ping
Xia Yong-yao
Preparation of mesocellular carbon foam and its application for lithium/ oxygen battery.
Electrochemistry Communications,
2009,
11, 1127.
168.
Read J.
Ether-Based Electrolytes for the Lithium/Oxygen Organic Electrolyte Battery.
Journal of The Electrochemical Society,
2006,
153, A96.
169.
Xu Wu
Xiao Jie
Zhang Jian
Wang Deyu
Zhang Ji-Guang
Optimization of Nonaqueous Electrolytes for Primary Lithium/Air Batteries Operated in Ambient Environment.
Journal of the Electrochemical Society,
2009,
156, A773.
170.
Xu Wu
Xiao Jie
Wang Deyu
Zhang Jian
Zhang Ji-Guang
Effects of Nonaqueous Electrolytes on the Performance of Lithium/Air Batteries.
Journal of the Electrochemical Society,
2010,
157, A219.
171.
Beattie S.D.
Manolescu D.M.
Blair S.L.
High- Capacity Lithium-Air Cathodes.
Journal of the Electrochemical Society,
2009,
156, A44.
172.
James A
Supported Metals in Catalysis;Adnerson and Marcos Fernandez Garcia. 2005.London, Imperial College Press.
173.
Trahey L.
Johnson C. S.
Vaughey J. T.
Kang S.-H.
Hardwick L. J.
Freunberger S. A.
Bruce P. G.
Thackeray M. M.
Activated Lithium-Metal-Oxides as Catalytic Electrodes for Li-O
2 Cells.
Electrochemical and Solid- State Letters,
2010,
14, A64.
174.
Reddy Thomas B.
Linden David
Linden's Handbook of Batteries. 2011, 33.1–33.58.
175.
Ohkuma Hirokazu
Uechi Ichiro
Imanish Nobuyuki
Hiraro Atsushi
Takeda Yasuo
Yamamoto Osamu
Carbon electrode with perovskite-oxide catalyst for aqueous electrolyte lithium-air secondary batteries.
Journal of Power Sources,
2013,
223, 319.
176.
Wang Xianyou
Sebastian P.J.
Smit Mascha A.
Yang Hongping
Gamboa S.A.
Studies on the oxygen reduction catalysts for zinc-air battery electrode.
Journal of Power Sources,
2003,
124, 278.
177.
Li Neng
Yan Xiaoming
Zhang Wanjing
Lin Bingxiong
Electrocatalytic activity of spinel-type oxides LiMn
2−
xCo
xO
4 with large specific surface areas for metal-air battery.
Journal of Power Sources,
1998,
74, 255.