[1] XX. Zhou and Y. Zhang,
Chem Soc Rev,
2015,
44(
15), 5148–5180.
[2] Y. Li, D. Zhang, X. Jin, L. Yang, X. Du and Y. Yang,
Sci China: Technol Sci,
2016,
59(
5), 468–479.
[3] JA. Turner,
Science,
2004,
305(
5686), 972–974.
[4] S. Chu and A. Majumdar,
Nature,
2012,
488(
7411), 294–303.
[5] GP. Peters, G. Marland, C. Le Quere, T. Boden, JG. Canadell and MR. Raupach,
Nat Clim Change,
2012,
2(
1), 2–4.
[6] J. Sun, HW. Lee, M. Pasta, H. Yuan, G. Zheng, Y. Sun, Y. Li and Y. Cui,
Nat Nanotechnol,
2015,
10(
11), 980–985.
[7] D. Larcher and JM. Tarascon,
Nat Chem,
2015,
7(
1), 19–28.
[8] S. Megahed and B. Scrosati,
J Power Sources,
1994,
51, 79–104.
[9] P. Simon and Y. Gogotsi,
Nat Mater,
2008,
7(
11), 845–854.
[10] SM. Haile,
Mater Today,
2003,
6(
9), 24–33.
[11] J. Baker,
Energy Polycy,
2008,
36(
12), 4368–4373.
[12] P. Simon, Y. Gogotsi and B. Dunn,
Science,
2014,
343(
6176), 1210–1211.
[13] AV. Patil, DW. Shin, JW. Choi, DS. Paik and SJ. Yoon,
Mater Res Bull,
2008,
43(
8–9), 1913–1942.
[14] Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen,
Chem Soc Rev,
2015,
44(
17), 5926–5940.
[15] M. Armand and JM. Tarascon,
Nature,
2008,
451(
7179), 652–657.
[16] JM. Tarascon and M. Armand,
Nature,
2001,
414(
6861), 359–367.
[17] T. Placke, R. Kloepsch, S. Dühnen and M. Winter,
J Solid State Electrochem,
2017,
21(
7), 1939–1964.
[18] D. Andre, SJ. Kim, P. Lamp, SF. Lux, F. Maglia, O. Paschos and B. Stiaszny,
J Mater Chem A,
2015,
3, 6709–6710.
[19] EJ. Berg, C. Villevieille, D. Streich, S. Trabesinger and P. Novák,
J Electrochem Soc,
2015,
162(
14), A2468–A2475.
[20] GE. Blomgren,
J Electrochem Soc,
2017,
164(
1), A5019–A5025.
[21] J. Lu, Z. Chen, Z. Ma, F. Pan, LA. Curtiss and K. Amine,
Nat Nanotechnol,
2016,
11(
12), 1031–1038.
[22] N. Yabuuchi, K. Kubota, M. Dahbi and S. Komata,
Chem Rev,
2014,
114(
23), 11636–11682.
[23] W. Zhang, Y. Liu and Z. Guo, Sci Adv, 2019, 5(5), eaav7412(1–13).
[24] W. Zhang, WK. Pang, V. Sencadas and Z. Guo,
Joule,
2018,
2, 1534–1547.
[25] PV. Braun, J. Cho, JH. Pikul, WP. King and H. Zhang,
Curr Opin Solid State Mater Sci,
2012,
16(
4), 186–198.
[26] G. Xu, Q. Wang, J. Fang, Y. Xu, J. Li, L. Huang and SG. Sun,
J Mater Chem A,
2014,
2(
47), 19941–19962.
[27] PG. Bruce, B. Scrosati and JM. Tarascon,
Angew Chem Int Ed,
2008,
47(
16), 2930–2946.
[28] Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen,
Chem Soc Rev,
2015,
44(
17), 5926–5940.
[29] S. Choi, Z. Chen, SA. Freunberger, X. Ji, YK. Sun, K. Amine, G. Yushin, LF. Nazar, J. Cho and PG. Bruce,
Angew, Chem Int Ed,
2012,
51(
40), 9994–10024.
[30] G. Ceder, YM. Chiang, DR. Sadoway, MK. Aydinol, YI. Jang and B. Huang,
Nature,
1998,
392(
6677), 694–696.
[31] J. Gao, SQ. Shi and H. Li, Chin Phys B, 2016, 25(1), 018210(1–24).
[32] JB. Goodenough and Y. Kim,
Chem Mater,
2010,
22(
3), 587–603.
[33] In: JK Park editors. Principles and Applications of Lithium Secondary Batteries. Wiley-VCH Germany,
2012.
[34] H. Berg, K. Göransson, B. Noläng and JO. Thomas,
J Mater Chem,
1999,
9, 2813–2820.
[35] JB. Goodenough and KS. Park,
J Am Chem Soc,
2013,
135(
4), 1167–1176.
[36] A. Van der Ven, J. Bhattacharya and AA. Belak,
Acc Chem Res,
2013,
46(
5), 1216–1225.
[37] M. Hu, X. Pang and Z. Zhou,
J Power Sources,
2013,
237, 229–242.
[38] G. Ceder,
MRS Bull,
2011,
35(
9), 693–701.
[39] K. Xu,
Chem Rev,
2014,
114(
23), 11503–11618.
[40] JB. Goodenough,
J Solid State Electrochem,
2012,
16(
6), 2019–2029.
[41] MD. Radin, S. Hy, M. Sina, C. Fang, H. Liu, J. Vinckeviciute, M. Zhang, MS. Whittingham, YS. Meng and A. Van der Ven, Adv Energy Mater, 2017, 7(20), 1602888(1–33).
[42] K. Toyoura, Y. Koyama, A. Kuwabara, F. Oba and I. Tanaka, Phys Rev B, 2008, 78(21), 214303(1–12).
[43] G. Chen, L. Yan, H. Luo and S. Guo,
Adv Mater,
2016,
28(
35), 7580–7602.
[44] N. Liu, W. Li, M. Pasta and Y. Cui,
Front Phys,
2014,
9(
3), 323–350.
[45] AS. Arico, PG. Bruce, B. Scrosati, JM. Tarascon and W. Van Schalkwij,
Nat Mater,
2005,
4(
5), 366–377.
[46] Q. Xu, RM. Rioux, MD. dickey and GM. Whitesides,
Acc Chem Res,
2008,
41(
12), 1566–1577.
[47] AR. Tao, J. Huang and P. Yang,
Acc Chem Res,
2008,
41(
12), 1662–1673.
[48] Y. Tang, Y. Zhang, W. Li, B. Ma and X. Chen,
Chem Soc Rev,
2015,
44(
17), 5926–5940.
[49] N. Mahmood, TY. Tang and YL. Hou, Adv Energy Mater, 2016, 6(17), 1600374(1–22).
[50] MV. Reddy, GVS. Rao and BVR. Chowdari,
Chem Rev,
2013,
113(
7), 5364–5457.
[51] W. Xu, J. Wang, F. Ding, X. Chen, E. Nasybulin, Y. Zhang and J. Zhang,
Energy Environ Sci,
2014,
7(
2), 513–537.
[52] NA. Kaskhedikar and J. Maier,
Adv Mater,
2009,
21(
25–26), 2664–2680.
[53] BY. Guan, L. Yu, J. Li and XW. Lou, Sci Adv, 2016, 2(3), e1501554(1–8).
[54] GN. Zhu, YG. Wang and YY. Xia,
Energy Environ Sci,
2012,
5(
50), 6652–6667.
[55] M. Winter, JO. Besenhard, ME. Spahr and P. Novak,
Adv Mater,
1998,
10(
10), 725–763.
[56] MD. Levi and D. Aurbach,
J Phys Chem B,
1997,
101(
23), 4641–4647.
[57] K. Persson, VA. Sethuraman, LJ. Hardwick, Y. hinuma, YS. Meng, A. van der Ven, V. Srinivasan, R. Kostecki and G. Ceder,
J Phys Chem Lett,
2010,
1(
8), 1176–1180.
[58] Y. Qi, H. Guo, LG. Hector Jr and A. Timmons,
J Electrochem Soc,
2010,
157(
5), A558–A566.
[59] Y. Yamada, K. Usui, CH. Chiang, K. Kikuchi, K. Furukawa and A. Yamada,
ACS Appl Mater Interfaces,
2014,
6(
140), 10892–10899.
[60] In: RA Huggins editors. Advanced Batteries-Materials Science Aspects. Springer Science & Business Media, New York, USA, 2009.
[61] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, R. Piner, A. Velamakanni, I. Jung, E. Tutuc, SK. Banerjee, L. Colombo and RS. Ruoff,
Science,
2009,
324, 1312–1314.
[62] D. Bar-Tow, E. Peled and L. Burstein,
J Electrochem Soc,
1999,
146(
3), 824–832.
[63] D. Aurbach, B. Markovsky, I. Weissman, E. Levi and Y. Ein-Eli,
Electrochim Acta,
1999,
45(
1), 67–86.
[64] Y. Wang, W. Tian, L. Wang, H. Zhang, J. Liu, T. Peng, L. Pan, X. Wang and M. Wu,
ACS Appl Mater Interfaces,
2018,
10(
6), 5577–5585.
[65] G. Nava, J. Schwan, MG. Boebinger, MT. McDowell and L. Mangolini,
Nano Lett,
2019,
19(
10), 7236–7245.
[66] S. Villagómez-Salas, P. Manikandan, SFA. Guzmán and VG. Pol,
ACS Omega,
2018,
3(
12), 17520–17527.
[67] H. Zheng, Q. Qu, L. Zhang, G. Liu and VS. Battaglia,
RSC Adv,
2012,
2, 4904–4912.
[68] R. Mukherjee, AV. Thomas, D. Datta, E. Singh, J. Li, O. Eksik, VB. Shenoy and N. Koratkar, Nat Commun, 2014, 5, 3710(1–10).
[69] N. Nitta, F. Wu, JT. Lee and G. Yushin,
Mater Today,
2015,
18(
5), 252–264.
[70] J. Liu and D. Xue,
Nanoscale Res Lett,
2010,
5(
10), 1525–1534.
[71] CM. Hayner, X. Zhao and HH. Kung,
Annu Rev Chem Biomol Eng,
2012,
3, 445–471.
[72] M. Senami, Y. Ikeda, A. Fukushima and A. Tachibana, AIP Adv, 2011, 1, 042106(1–12).
[73] BJ. Landi, MJ. Ganter, CD. Cress, RA. Dileo and RP. Raffaelle,
Energy Environ Sci,
2009,
2, 638–654.
[74] C. Zhao, Y. Lu, H. Liu and L. Chen,
RSC Adv,
2019,
9, 17299–17307.
[75] C. De Las Casa and WA. Li,
J Power Sources,
2012,
208, 74–85.
[76] R. Fang, K. Chen, L. Yin, Z. Sun, F. Li and HM. Cheng, Adv Mater, 2019, 31, 1800863(1–22).
[77] LW. Ji, Z. Lin, M. Alcoutlabi and XW. Zhang,
Energy Environ Sci,
2011,
4(
8), 2682–2699.
[78] C. Xu, D. Niu, N. Zheng, H. Yu, J. He and Y. Li,
ACS Sustainable Chem Eng,
2018,
6, 5999–6007.
[79] K. Omichi, G. Ramos-Sanchez, R. Rao, N. Pierce, G. Chen, PB. Balbuena and AR. Harutyunyan,
J Electrochem Soc,
2015,
162(
10), A2106–A2115.
[80] K. Teshima, H. Inagaki, S. Tanaka, K. Yubuta, M. Hozumi, K. Kohama, T. Shishido and S. Oishi,
Cryst Growth Des,
2011,
11(
10), 4401–4405.
[81] B. Zhao, R. Ran, M. Liu and Z. Shao,
Mater Sci Eng R Rep,
2015,
98, 1–71.
[82] D. Doughty and EP. Rother, Electrochem Soc Interface, 2012, 21(2), 37–44.
[83] SY. Yin, L. Song, XY. Wang, MF. Zhang, KL. Zhang and YX. Zhang,
Electrochim Acta,
2009,
54(
24), 5629–5633.
[84] HK. Song, KT. Lee, MG. Kim, LF. Nazar and J. Cho,
Adv Funct Mater,
2010,
20, 3818–3834.
[85] WJH. Borghols, M. Wagemaker, U. Lafont, EM. Kelder and FM. Mulder,
J Am Chem Soc,
2009,
131(
49), 17786–17792.
[86] L. Wang, Q. Xiao, Z. Li, G. Lei, P. Zhang and M. Wei,
J Solid State Electrochem,
2012,
16, 3307–3313.
[87] X. Feng, H. Zou, H. Xiang, X. Guo, T. Zhou, Y. Wu, W. Xu, P. Yan, C. Wang, JG. Zhang and Y. Yu,
ACS Appl Mater Interfaces,
2016,
8(
26), 16718–16726.
[88] D. Shao, J. He, Y. Luo, W. Liu, X. Yu and Y. Fang,
J Solid State Elecrochem,
2012,
16(
6), 2047–2053.
[89] L. Zhao, YS. Hu, H. Li, ZX. Wang and LQ. Chen,
Adv Mater,
2011,
23(
11), 1385–1388.
[90] DH. Long, MG. Jeong, YS. Lee, W. Choi, JK. Lee, IH. Oh and HG. Jung,
ACS Appl Mater Interfaces,
2015,
7(
19), 10250–10257.
[91] L. Shen, H. Li, E. Uchaker, X. Zhang and G. Cao,
Nano Lett,
2012,
12(
11), 5673–5678.
[92] AG. Dylla, G. Henkelman and KJ. Stevenson,
Acc Chem Res,
2013,
46(
5), 1104–1112.
[93] V. Augustyn, J. Come, MA. Lowe, JW. Kim, PL. Taberna, SH. Tolbert, HD. Abruna, P. Simon and B. Dunn,
Nat Mater,
2013,
12, 518–522.
[94] T. Ohzuku, K. Sawai and T. Hirai,
J Power Sources,
1987,
19, 287–299.
[95] E. Lim, C. Jo, H. Kim, MH. kim, Y. Mun, J. Chun, Y. Ye, J. Hwang, KS. Ha and KC. Roh,
ACS Nano,
2015,
9(
7), 7497–7505.
[96] L. Kong, C. Zhang, J. Wang, W. Qiao, L. Ling and D. Long,
ACS Nano,
2015,
9(
11), 11200–11208.
[97] CM. Park, JH. Kim, H. Kim and HJ. Sohn,
Chem Soc Rev,
2010,
39(
8), 3115–3141.
[98] Y. Yang, S. Liu, X. Bian, J. Feng, Y. An and C. Yuan,
ACS Nano,
2018,
12(
3), 2900–2908.
[99] RA. Huggins and BA. Boukamp, US patent 4,436,796. 1984.
[100] J. Yang, M. Winter and JO. Besenhard,
Solid State Ionics,
1996,
90, 281–287.
[101] MG. Kim and J. Cho,
Adv Funct Mater,
2009,
19(
10), 1497–1514.
[102] M. Pharr, KJ. Zhao, XW. Wang, ZG. Suo and JJ. Vlassak,
Nano Lett,
2012,
12(
9), 5039–5047.
[103] N. Wang, Z. Bai, Y. Qian and J. Yang,
Adv Mater,
2016,
28, 4126–4133.
[104] LP. Xu, C. Kim, AK. Shukla, AG. Dong, TM. Mattox, DJ. Milliron and J. Cabana,
Nano Lett,
2013,
13(
4), 1800–1805.
[105] H. Peng, R. Li, J. Hu, W. Deng and F. Pan,
Appl Mater Interfaces,
2016,
8(
19), 12221–12227.
[106] Y. Liu, NS. Hudak, DL. Huber, SJ. Limmer, JP. Sullivan and JY. Huang,
Nano Lett,
2011,
11(
10), 4188–4194.
[107] P. Xue, N. Wang, Z. Fang, Z. Lu, X. Xu, L. Wang, Y. Du, X. Ren, Z. Bai, S. Dou and G. Yu,
Nano Lett,
2019,
19, 1998–2004.
[108] CJ. Wen and RA. Huggins,
J Solid State Chem,
1981,
37(
3), 271–278.
[109] P. Roy and SK. Srivastava,
J Mater Chem A,
2015,
3, 2454–2484.
[110] Z. Wang, M. Gu, Y. Zhou, X. Zu, JG. Connell, J. Xiao, D. Perea, LJ. Lauhon, J. Bang, S. Zhang, C. Wang and F. Gao,
Nano Lett,
2013,
13(
9), 4511–4516.
[111] CS. Fuller and JC. Severiens,
Phys Rev,
1954,
96(
1), 21–25.
[112] LY. Lim, S. Fan, HH. Hng and MF. Toney, Adv Energy Mater, 2015, 5(15), 1500599(1–8).
[113] M. Pharr, YS. Choi, D. Lee, KH. Oh and JJ. Vlassak,
J Power Sources,
2016,
304, 164–169.
[114] N. Nitta and G. Yushin,
Part Part Syst Charact,
2013,
31(
3), 317–336.
[115] B. Wang, B. Luo, X. Li and L. Zhi,
Materials Today,
2012,
15(
12), 544–552.
[116] R. Demir-Cakan, YS. Hu, M. Antonietti, J. Maier and MM. Titirici,
Chem Mater,
2008,
20(
4), 1227–1229.
[117] Y. Liu, NS. Hudak, DL. Huber, SJ. Limmer, JP. Sullivan and JY. Huang,
Nano Lett,
2011,
11(
10), 4188–4194.
[118] J. Qian, D. Qiao, X. Ai, Y. Cao and H. Yang,
Chem Commun,
2012,
48(
71), 8931–8933.
[119] L. Zhang, HB. Wu and XW. Lou, Adv Energy Mater, 2014, 4(4), 1300958(1–11).
[120] J. Cabana, L. Monconduit, D. Larcher and MR. Palacin,
Adv Mater,
2010,
22, E170–E192.
[121] D. Bresser, S. Passerini and B. Scrosati,
Energy Environ Sci,
2016,
9, 3348–3367.
[122] CZ. Yuan, HB. Wu, Y. Xie and XW. Lou,
Angew Chem Int Ed,
2014,
53(
6), 1488–1504.
[123] X. Xu, W. Liu, Y. Kim and J. Cho,
Nano Today,
2014,
9(
5), 604–630.
[124] SM. Dong, X. Chen, XY. Zhang and GL. Cui,
Chem Rev,
2013,
257(
13–14), 1946–1956.
[125] K. Rui, ZY. Wen, Y. Lu, J. Jin and C. Shen, Adv Energy Mater, 2015, 5(7), 1401716(1–11).
[126] Y. Xiao, JY. Hwang, I. Belharouak and YK. Sun,
Nano Energy,
2017,
32, 320–328.
[127] HJ. Oh, CH. Jo, CS. Yoon, H. Yashiro, SJ. Kim, S. Passerini, YK. Sun and ST. Myung, NPG Asia Mater, 2016, 8(5), e270(1–8).
[128] DY. Park, YK. Sun and ST. Myung,
J Power Sources,
2015,
280, 1–4.
[129] T. Yoon, C. Chae, YK. Sun, X. Zhao, HH. Kung and JK. Lee,
J Mater Chem,
2011,
21(
43), 17325–17330.
[130] KA. Kwon, HS. Lim, YK. Sun and KD. Suh,
J Phys Chem C,
2014,
118(
16), 2897–2903.
[131] AS. Arico, P. Bruce, B. Scrosati and JM. Tarascon,
Nat Mater,
2005,
4(
5), 366–377.
[132] Y. Wang, J. Yang, H. Qiu, I. Peng and W. Li,
Nanoscale,
2015,
7(
38), 15983–15989.
[133] Y. Yang, X. Fan, G. Casillas, Z. Peng, G. Ruan, G. Wang, MJ. Yacaman and JM. Tour,
ACS Nano,
2014,
8(
4), 3939–3946.
[134] X. Zhou, LJ. Wan and YG. Guo,
Adv Mater,
2013,
25(
15), 2152–2157.
[135] ZS. Wu, W. Ren, L. Wen, L. Gao, J. Zhao, Z. Chen, G. Zhou, F. Li and HM. Cheng,
ACS Nano,
2010,
4(
6), 3187–3194.
[136] N. Liu, Z. Lu, J. Zhao, MT. McDowell, HW. Lee, W. Zhao and Y. Cui,
Nat Nanotechnol,
2014,
9(
3), 187–192.
[137] Y. Kim, JH. Lee, S. Cho, Y. Kwon, I. In, J. Lee, NH. You, E. Reichmanis, H. Ko, KT. Lee, HK. Kwon, DH. Ko, H. Yang and B. Park,
ACS Nano,
2014,
8(
7), 6701–6712.
[138] JS. Cho and YC. Kang,
Small,
2015,
11(
36), 4673–4681.
[139] MS. Whittingham,
Science,
1976,
192(
4244), 1126–1127.
[140] J. Zhao, Y. Zhang, Y. Wang, H. Li and Y. Peng,
J Energy Chem,
2018,
27(
6), 1536–1554.
[141] YS. Su and A. Manthiram, Nat Commun, 2012, 3(1166), 1–6.
[142] M. Cuisinier, PE. Cabelguen, BD. Adams, A. Garsuch, M. Balasubramanian and LF. Nazar,
Energy Environ Sci,
2014,
7(
8), 2697–2705.
[143] N. Mahmood, C. Zhang, H. Yin and Y. Hou,
J Mater Chem A,
2014,
2(
1), 15–32.
[144] N. Mahmood, C. Zhang, J. Jiang, F. Liu and Y. Hou,
Chemistry,
2013,
19(
16), 5183–5190.
[145] Q. Wang, R. Zou, W. Xia, J. Ma, B. Qiu, A. Mahmood, R. Zhao, Y. Yang, D. Xia and Q. Xu,
Small,
2015,
11(
21), 2511–2517.
[146] N. Mahmood, C. Zhang and Y. Hou,
Small,
2013,
9(
8), 1321–1328.
[147] X. Wang, G. Li, MH. Seo, FM. Hassan, MA. Hoque and Z. Chen, Adv Energy Mater, 2015, 5(17), 1500716(1–8).
[148] F. Bozheyev, A. Zhexembekova, S. Zhumagali, A. Molkenoa and Z. Bakenov,
Materials Today,
2017,
4(
3), 4567–4571.
[149] S. Zhang, BVR. Chowdari, Z. Wen, J. Jin and J. Yang,
ACS Nano,
2015,
9(
12), 12464–12472.
[150] M. Wang, GD. Li, HY. Xu, YT. Qian and J. Yang,
ACS Appl Mater Interfaces,
2013,
5(
3), 1003–1008.
[151] J. Zhou, J. Qin, X. Zhang, C. Shi, E. Liu, J. Li, N. Zhao and C. He,
ACS Nano,
2015,
9(
4), 3837–3848.
[152] X. Wang, J. Tian, X. Cheng, R. Na, D. Wang and Z. Shan,
ACS Appl Mater Interfaces,
2018,
10, 35953–35962.
[153] K. Mizushima, PC. Jones, PJ. Wiseman and JB. Goodenough,
Mater Res Bull,
1980,
15(
6), 783–789.
[154] JB. Goodenough and Y. Kim,
Chem Mater,
2010,
22(
3), 587–603.
[155] W. Liu, P. Oh, XE. Liu, MJ. Lee, W. Cho, S. Chae, Y. Kim and J. Cho,
Angew Chem Int Ed,
2015,
54, 4440–4457.
[156] WJ. Tang, ZX. Chen, F. Xiong, F. Chen, C. Huang, Q. Gao, TZ. Wang, ZH. Yang and WX. Zhang,
J Power Sources,
2019,
412, 246–254.
[157] M. Hu, XL. Pang and Z. Zhou,
J Power Sources,
2013,
237(
4), 229–242.
[158] R. Chen, T. Zhao, X. Zhang, L. Li and F. Wu,
Nanoscale Horiz,
2016,
1(
6), 423–444.
[159] J. Xiao, JM. Zheng, XL. Li, YY. Shao and JG. Zhang, Nanotechnology, 2013, 24, 424004(1–7).
[160] J. Shim, S. Lee and SS. Park,
Chem Mater,
2014,
26, 2537–2543.
[161] N. Wu, Y. Zhang, Y. Guo, S. Liu, H. Liu and H. Wu,
ACS Appl Mater Interfaces,
2016,
8, 2723–2731.
[162] Y. Makimura and T. Ohzuku,
J Power Sources,
2003,
119–121, 156–160.
[163] MS. Islam, RA. Davies and JD. Gale,
Chem Mater,
2003,
15(
22), 4280–4286.
[164] Y. Koyama, Y. Makimura, I. Tanaka, H. Adachi and T. Ohzuku,
J Electrochem Soc,
2004,
151(
9), A1499–A1506.
[165] E. Rossen, CDW. Jones and JR. Dahn,
Solid State Ionics,
1992,
57(
3–4), 311–318.
[166] B. Huang, K. Qian, Y. Liu, D. Liu, K. Zhou, F. Kang and B. Li,
ACS Sustainable Chem,
2019,
7(
7), 7378–7385.
[167] J. Kasnatscheew, M. Evertz, B. Streipert, R. Wagner, S. Nowak, IC. Laskovic and M. Winter,
J Phys Chem C,
2017,
121(
3), 1521–1529.
[168] K. Zhang, X. Han, Z. Hu, X. Zhang, Z. Tao and J. Chen,
Chem Soc Rev,
2015,
44(
3), 699–728.
[169] H. Zheng, X. Chen, Y. Yang, L. Li, G. Li, Z. Guo and C. Feng,
ACS Appl Mater Interfaces,
2017,
9, 39560–39568.
[170] C. Liu, G. Cao, Z. Wu, J. Hu, H. Wang and G. Shao,
ACS Appl Mater Interfaces,
2019,
11, 31991–31996.
[171] YL. Ding, J. Xie, GS. Cao, TJ. Zhu, HM. Yu and XB. Zhao,
Adv Funct Mater,
2011,
21(
2), 348–355.
[172] X. Zhang, F. Cheng, K. Zhang, Y. Liang, S. Yang, J. Liang and J. Chen,
RSC Adv,
2012,
2(
13), 5669–5675.
[173] HW. Lee, P. Muralidharan, R. Ruffo, CM. Mari, Y. Cui and DK. Kim,
Nano Lett,
2010,
10, 3852–3856.
[174] S. Lee, Y. Cho, HK. Song, KT. Lee and J. Cho,
Angew Chem Int Ed,
2012,
51(
35), 8748–8752.
[175] F. Wang, L. Suo, Y. Liang, C. Yang, F. Han, T. Gao and C. Wang,
Adv Energy Mater,
2017,
7, 1600922.
[176] J. Yang, X. Han, X. Zhang, F. Cheng and J. Chen,
Nano Res,
2013,
6, 679–687.
[177] J. Cabana, M. Casas-Cabanas, FO. Omenya, NA. Chernova, D. Zeng, MS. Whittingham and CP. Grey, Chem Mater, 2012, 24(15), 29522964.
[178] S. Li, G. Ma, B. Guo, ZH. Yang, XM. Fan, ZX. Chen and WX. Zhang,
Ind Eng Chem Res,
2016,
55, 9352–9361.
[179] G. Xu, Z. Liu, C. Zhang, G. Cui and L. Chen,
J Mater Chem A,
2015,
3, 4092–4123.
[180] C. Jiang, Z. Tang, S. Deng, Y. Hong, S. Wang and Z. Zhang,
RSC Adv,
2017,
7, 3746–3751.
[181] ZH. Xiao, QQ. Cui, XL. Li, HL. Wang and Q. Zhou,
Ionics,
2015,
21, 1261–1267.
[182] P. Barpanda, L. Lander, S. Nishimura and A. Yamada,
Adv Energy Mater,
2018,
8, 1703055.
[183] C. Orendorff and D. Doughty,
Electrochem Soc Interface,
2012,
21(
2), 35–66.
[184] Z. Ma, G. Shao, Y. Fan, G. Wang, J. Song and T. Liu,
ACS Appl Mater Interfaces,
2014,
6(
12), 9236–9244.
[185] K. Zhang, Z. Hu, H. Gao, H. Feng, F. Cheng, Z. Tao and J. Chen,
Sci Adv Mater,
2013,
5(
11), 1676–1685.
[186] J. Li, S. Luo, X. Ding, Q. Wang and P. He,
ACS Sustainable Chem Eng,
2018,
6, 16683–16691.
[187] CAJ. Fisher, N. Kuganathan and MS. Islam,
J Mater Chem A,
2013,
1(
13), 4207–4214.
[188] B. Xu, D. Qian, Z. Wang and YS. Meng,
Mater Sci Eng R,
2012,
73(
5–6), 51–65.
[189] L. Li, F. Meng and S. Jin,
Nano Lett,
2012,
12(
11), 6030–6037.
[190] WT. Gu, A. Magasinski, B. Zdyrko and G. Yushin, Adv Energy Mater, 2015, 5(4), 1401148(1–7).
[191] ZW. Fu, CL. Li, WY. Liu, J. Ma, Y. Wang and QZ. Qin,
J Electrochem Soc,
2005,
152(
2), E50–E55.
[192] WJ. Zhang,
J Power Sources,
2011,
196(
1), 13–24.